Project description:Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease are urgently needed. F. columnare naturally occurs in a planktonic, free living state where it can survive for long periods of time, even in the absence of nutrients. In contrast, F. columnare also possesses the ability to form biofilms, broadly defined as surface bound microbial communities inhabiting an organic matrix composed of autogenously derived extracellular polymeric substances. The advantages of adopting this life stage are not completely clear for F. columnare, but biofilm formation could increase virulence by offering protection from desiccation, augment resistance to antimicrobials, improve nutrient acquisition, and protection against other bacteria. To examine gene expression between F. columnare planktonic cells and biofilms, we conducted a study where both phases were grown with and without stimulation and then sampled for RNA sequencing.
Project description:Three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution - adaptation to freshwater environment. While genetic adaptations to freshwater are well-studied, epigenetic adaptations attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into freshwater environment and freshwater sticklebacks placed into seawater. For the first time, we demonstrated that genes encoding ion channels kcnd3, cacna1fb, gja3 are differentially methylated between marine and freshwater populations. We also showed that after placing marine stickleback into fresh water, its DNA methylation profile partially converges to the one of a freshwater stickleback. This suggests that immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. Some of the regions that were reported previously to be under selection in freshwater populations also show differential methylation. Thus, epigenetic changes might represent a parallel mechanism of adaptation along with genetic selection in freshwater environment.
Project description:Yeast whole cells have been widely used in modern biotechnology as biocatalysts to generate numerous compounds of industrial, chemical, and pharmaceutical importance. Since many of the biocatalysis utilizing manufactures have become more concerned about environmental issues, seawater is now considered a sustainable alternative to freshwater for biocatalytic processes. This approach plausibly commenced new research initiatives into exploration of salt tolerant yeast strains. Recently, there has also been a growing interest in possible applications of microbial biofilms in the field of biocatalysis. In these complex communities, cells demonstrate higher resistance to adverse environmental conditions due to their embedment in an extracellular matrix, in which physical, chemical, and physiological gradients exist. Considering these two topics, seawater and biofilms, in this work we characterized biofilm formation in seawater-based growth media by several salt tolerant yeast strains with previously demonstrated bocatalytic capacities. The tested strains formed both air-liquid-like biofilms and biofilms on silicone surfaces, with Debaryomyces fabryi, Schwanniomyces etchellsii, S. polymorphus and Kluyveromyces marxianus showing the highest biofilm formation. The extracted biofilm extracellular matrices mostly consisted of carbohydrates and proteins. The latter group was primarily represented by enzymes involved in metabolic processes, particularly the biosynthetic ones, and in the response to stimuli. Specific features were also found in the carbohydrate composition of the extracellular matrix, which were dependent both on the yeast isolate and the nature of formed biofilms. Overall, our findings presented herein provide a unique data resource for further development and optimization of biocatalytic processes and applications employing seawater and halotolerant yeast biofilms.
Project description:Three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution - adaptation to freshwater environment. While genetic adaptations to freshwater are well-studied, epigenetic adaptations attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into freshwater environment and freshwater sticklebacks placed into seawater. For the first time, we demonstrated that genes encoding ion channels kcnd3, cacna1fb, gja3 are differentially methylated between marine and freshwater populations. We also showed that after placing marine stickleback into fresh water, its DNA methylation profile partially converges to the one of a freshwater stickleback. This suggests that immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. Some of the regions that were reported previously to be under selection in freshwater populations also show differential methylation. Thus, epigenetic changes might represent a parallel mechanism of adaptation along with genetic selection in freshwater environment. This is the RNA-seq experiment, DNA methylation data (bisulfite-seq) is provided under accession number GSE82310.
Project description:Ravindra Garde, Bashar Ibrahim & Stefan Schuster. Extending the minimal model of metabolic oscillations in Bacillus subtilis biofilms. Scientific Reports 10, 1 (2020).
Biofilms are composed of microorganisms attached to a solid surface or floating on top of a liquid surface. They pose challenges in the field of medicine but can also have useful applications in industry. Regulation of biofilm growth is complex and still largely elusive. Oscillations are thought to be advantageous for biofilms to cope with nutrient starvation and chemical attacks. Recently, a minimal mathematical model has been employed to describe the oscillations in Bacillus subtilis biofilms. In this paper, we investigate four different modifications to that minimal model in order to better understand the oscillations in biofilms. Our first modification is towards making a gradient of metabolites from the center of the biofilm to the periphery. We find that it does not improve the model and is therefore, unnecessary. We then use realistic Michaelis-Menten kinetics to replace the highly simple mass-action kinetics for one of the reactions. Further, we use reversible reactions to mimic the diffusion in biofilms. As the final modification, we check the combined effect of using Michaelis-Menten kinetics and reversible reactions on the model behavior. We find that these two modifications alone or in combination improve the description of the biological scenario.
Project description:Biofilms offer an excellent example of ecological interaction among bacteria. Temporal and spatial oscillations in biofilms are an emerging topic. In this paper, we describe the metabolic oscillations in Bacillus subtilis biofilms by applying the smallest theoretical chemical reaction system showing Hopf bifurcation proposed by Wilhelm and Heinrich in 1995. The system involves three differential equations and a single bilinear term. We specifically select parameters that are suitable for the biological scenario of biofilm oscillations. We perform computer simulations and a detailed analysis of the system including bifurcation analysis and quasi-steady-state approximation. We also discuss the feedback structure of the system and the correspondence of the simulations to biological observations. Our theoretical work suggests potential scenarios about the oscillatory behaviour of biofilms and also serves as an application of a previously described chemical oscillator to a biological system.