Project description:Mannitol is a polyol that occurs in a wide range of living organisms, where it fulfills different physiological roles. In particular, mannitol can account for as much as 20 to 30% of the dry weight of brown algae and is likely to be an important source of carbon for marine heterotrophic bacteria. Zobellia galactanivorans (Flavobacteriia) is a model for the study of pathways involved in the degradation of seaweed carbohydrates. Annotation of its genome revealed the presence of genes potentially involved in mannitol catabolism, and we describe here the biochemical characterization of a recombinant mannitol-2-dehydrogenase (M2DH) and a fructokinase (FK). Among the observations, the M2DH of Z. galactanivorans was active as a monomer, did not require metal ions for catalysis, and featured a narrow substrate specificity. The FK characterized was active on fructose and mannose in the presence of a monocation, preferentially K(+). Furthermore, the genes coding for these two proteins were adjacent in the genome and were located directly downstream of three loci likely to encode an ATP binding cassette (ABC) transporter complex, suggesting organization into an operon. Gene expression analysis supported this hypothesis and showed the induction of these five genes after culture of Z. galactanivorans in the presence of mannitol as the sole source of carbon. This operon for mannitol catabolism was identified in only 6 genomes of Flavobacteriaceae among the 76 publicly available at the time of the analysis. It is not conserved in all Bacteroidetes; some species contain a predicted mannitol permease instead of a putative ABC transporter complex upstream of M2DH and FK ortholog genes.
Project description:Zobellia galactanivorans is an emerging model bacterium for the bioconversion of algal biomass. Notably, this marine Bacteroidetes possesses a complex agarolytic system comprising four ?-agarases and five ?-porphyranases, all belonging to the glycoside hydrolase family 16. Although ?-agarases are specific for the neutral agarobiose moieties, the recently discovered ?-porphyranases degrade the sulfated polymers found in various quantities in natural agars. Here, we report the biochemical and structural comparison of five ?-porphyranases and ?-agarases from Z. galactanivorans. The respective degradation patterns of two ?-porphyranases and three ?-agarases are analyzed by their action on defined hybrid oligosaccharides. In light of the high resolution crystal structures, the biochemical results allowed a detailed mapping of substrate specificities along the active site groove of the enzymes. Although PorA displays a strict requirement for C6-sulfate in the -2- and +1-binding subsites, PorB tolerates the presence of 3-6-anhydro-l-galactose in subsite -2. Both enzymes do not accept methylation of the galactose unit in the -1 subsite. The ?-agarase AgaD requires at least four consecutive agarose units (DP8) and is highly intolerant to modifications, whereas for AgaB oligosaccharides containing C6-sulfate groups at the -4, +1, and +3 positions are still degraded. Together with a transcriptional analysis of the expression of these enzymes, the structural and biochemical results allow proposition of a model scheme for the agarolytic system of Z. galactanivorans.