Project description:An indica rice cultivar IET8585 (Ajaya), resists diverse races of the Xanthomonas oryzae pv oryzae (Xoo) pathogen attack, and is often cultivated as bacterial leaf blight (blb) resistant check in India. Earlier we reported a recessive blb resistance gene mapped to the long arm of chromosome 5 in IET8585. To further understand the mechanism of recessive and durable resistance response, two indica rice genotypes namely, i) IET8585 (Ajaya), a disease resistant indica veriety from India and ii) IR24, a bacterial leaf blight disease susceptible genotype were selected for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under inoculated and un-inoculated conditions during seedling stage. Keywords: Bacterial leaf blight disease resistance mechanism
Project description:Crown roots differentiate from stem base in rice. In this study, we followed gene expression in stem base of two Vietnamese indica rice varieties that belong to two haplotypes defining a QTL associated with crown root number. We used microarrays to look for the gene differentially expressed in stem base of two varieties.
Project description:An indica rice cultivar FR13A, is widely grown as submergence tolerant variety and can withstand submergence up to two weeks. The tolerance is governed by a major QTL on chromosome 9 and represented as sub1. Recently the gene for sub1 has been mapped and cloned. However, the trait is governed by several QTLs and not by a single gene. To understand the mechanism of submergence tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and submerged conditions at seedling stage. Keywords: Mechanism of submergence tolerance
Project description:A submergence tolerant indica rice cultivar FR13A, was also reported to withstand salt stress and proven in our experiments. The mechanism of tolerance is yet to be studied by forward genetics approach. However, it is known that salt stress tolerance is governed by several QTLs and not by a single gene. To understand the mechanism of such a complex mechanism of salt tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and salt stress conditions at seedling stage. Keywords: Mechanism of salt tolerance
Project description:Rice (Oryza sativa), the major staple food crop is being cultivated under varying ecosystems ranging from irrigated lowland to rainfed upland environments. Improvement in the rice production under drought prone unfavourable environment depends on the development of drought tolerant genotypes which needs thorough understanding of physiological and molecular events behind the tolerance mechanism. There is considerable genetic variation for drought tolerance mechanism within the cultivated gene pool. To understand the diversity of drought response, two indica rice genotypes namely, i) Apo, an up-land drought tolerant indica veriety from Philippines and ii) IR64, a popular high yielding drought susceptible genotype were selected for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under control and drought stressed conditions during vegetative phase. Keywords: Drought response
Project description:An indica rice cultivar IET8585 (Ajaya), resists diverse races of the Xanthomonas oryzae pv oryzae (Xoo) pathogen attack, and is often cultivated as bacterial leaf blight (blb) resistant check in India. Earlier we reported a recessive blb resistance gene mapped to the long arm of chromosome 5 in IET8585. To further understand the mechanism of recessive and durable resistance response, two indica rice genotypes namely, i) IET8585 (Ajaya), a disease resistant indica veriety from India and ii) IR24, a bacterial leaf blight disease susceptible genotype were selected for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under inoculated and un-inoculated conditions during seedling stage. Experiment Overall Design: We used Agilent rice gene chips (G4138A) to investigate the transcript level changes in rice leaf tissues during bacterial pathogen infection. We used two contrasting rice genotypes (IET8585 (Ajaya) blb resistant IR24 blb susceptible) differing in bacterial disease response. Plants were grown growth chambers and inoculated with bacterial pathogen on 18th DAS. Leaf sampling was done in both un-inoculated and inoculated plants at 3 time points. Two replications of microarray experiments were carried out by hybridizing the resistant samples against the susceptible samples.
Project description:An indica rice cultivar FR13A, is widely grown as submergence tolerant variety and can withstand submergence up to two weeks. The tolerance is governed by a major QTL on chromosome 9 and represented as sub1. Recently the gene for sub1 has been mapped and cloned. However, the trait is governed by several QTLs and not by a single gene. To understand the mechanism of submergence tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and submerged conditions at seedling stage. SUBMITTER_CITATION: Combining In Silico Mapping and Arraying: an Approach to Identifying Common Candidate Genes for Submergence Tolerance and Resistance to Bacterial Leaf Blight in Rice. Mol. Cells 2007 24:394-408. Experiment Overall Design: We used Agilent rice gene chips (G4138A) to investigate the transcript level changes in rice leaf tissues during submergence treatment. We used two contrasting rice genotypes (FR13A tolerant and IR24 susceptible) differing in submergence response. Plants were grown in growth chambers and treated by submerging the plants in transparent polythene bags on14th DAS. Leaf sampling was done in both constitutive and treated plants at 3 time points. Two replications of microarray experiments were carried out by hybridizing the RNA from tolerant samples against the susceptible lines.
Project description:Cold stress is one of the major abiotic stress factors affecting rice growth and development, leading to great yield loss in the context of global climate change. Exploring superior natural variants that confer cold resistance and the underlying molecular mechanism is the major strategy to breed cold tolerant rice varieties. Here, we identified natural variations of a SIMILAR to RCD ONE (SRO) gene OsSRO1c that confers cold tolerance in rice at both seedling and booting stages. OsSRO1c interacts with transcription factor OsDREB2B and promotes its transcriptional activity by concentrating OsDREB2B into biomolecular condensates in the nucleus. The OsSRO1c-OsDREB2B complex directly sense cold stress through dynamic phase transitions in vivo and in vitro and regulate key cold response gene COLD1. Introgression of an elite haplotype of OsSRO1c into a cold susceptible indica rice can significantly increase its cold resistance ability. Thus, our work revealed a novel cold stress sensing module and provided a promising gene resource for breeding cold tolerant rice varieties.