Project description:The lack of bacteriophages capable of infecting the Listeria species, Listeria grayi, is academically intriguing and presents an obstacle to the development of bacteriophage-based technologies for Listeria. We describe the isolation and engineering of a novel L. grayi bacteriophage, LPJP1, isolated from farm silage. With a genome over 200,000 base pairs, LPJP1 is the first and only reported jumbo bacteriophage infecting the Listeria genus. Similar to other Gram-positive jumbo phages, LPJP1 appeared to contain modified base pairs, which complicated initial attempts to obtain genomic sequence using standard methods. Following successful sequencing with a modified approach, a recombinant of LPJP1 encoding the NanoLuc luciferase was engineered using homologous recombination. This luciferase reporter bacteriophage successfully detected 100 stationary phase colony forming units of both subspecies of L. grayi in four hours. A single log phase colony forming unit was also sufficient for positive detection in the same time period. The recombinant demonstrated complete specificity for this particular Listeria species and did not infect 150 non-L. grayi Listeria strains nor any other bacterial genus. LPJP1 is believed to be the first reported lytic bacteriophage of L. grayi as well as the only jumbo bacteriophage to be successfully engineered into a luciferase reporter.
Project description:BackgroundIxodes scapularis is the most common tick species in North America and a vector of important pathogens that cause diseases in humans and animals including Lyme disease, anaplasmosis and babesiosis. Tick defensins have been identified as a new source of antimicrobial agents with putative medical applications due to their wide-ranging antimicrobial activities. Two multigene families of defensins were previously reported in I. scapularis. The objective of the present study was to characterise the potential antimicrobial activity of two defensins from I. scapularis with emphasis on human pathogenic bacterial strains and important phytopathogenic fungi.MethodsScapularisin-3 and Scapularisin-6 mature peptides were chemically synthesised. In vitro antimicrobial assays were performed to test the activity of these two defensins against species of different bacterial genera including Gram-positive bacteria Staphylococcus aureus, Staphylococcus epidermidis, and Listeria spp. as well as Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa along with two plant-pathogenic fungi from the genus Fusarium. In addition, the tissue-specific expression patterns of Scapularisin-3 and Scapularisin-6 in I. scapularis midgut, salivary glands and embryo-derived cell lines were determined using PCR. Finally, tertiary structures of the two defensins were predicted and structural analyses were conducted.ResultsScapularisin-6 efficiently killed L. grayi, and both Scapularisin-3 and Scapularisin-6 caused strong inhibition (IC50 value: ~1 μM) of the germination of plant-pathogenic fungi Fusarium culmorum and Fusarium graminearum. Scapularisin-6 gene expression was observed in I. scapularis salivary glands and midgut. However, Scapularisin-3 gene expression was only detected in the salivary glands. Transcripts from the two defensins were not found in the I. scapularis tick cell lines ISE6 and ISE18.ConclusionOur results have two main implications. Firstly, the anti-Listeria and antifungal activities of Scapularisin-3 and Scapularisin-6 suggest that these peptides may be useful for (i) treatment of antibiotic-resistant L. grayi in humans and (ii) plant protection. Secondly, the antimicrobial properties of the two defensins described in this study may pave the way for further studies regarding pathogen invasion and innate immunity in I. scapularis.
Project description:External signals are key for bacteria to sense their immediate environment and fine-tune gene expression accordingly. The foodborne pathogen Listeria monocytogenes senses a range of environmental cues in order to activate or deactivate the virulence-inducing transcriptional factor PrfA during transition between infectious and saprophytic lifecycles. Chitin is an abundant biopolymer formed from linked β-(1–4)-N-acetyl-D-glucosamine residues associated with fungi, the exoskeleton of insects and often incorporated into foods as a thickener or stabiliser. L. monocytogenes evolved to hydrolyse chitin, presumably, to facilitate nutrient acquisition from competitive environments such as soil where the polymer is abundant. Since mammals do not produce chitin, we reasoned that the polymer could serve as an environmental signal contributing to repression of L. monocytogenes PrfA-dependent expression outside the host. This study shows a significant downregulation of the core PrfA-regulon during virulence-inducing conditions in vitro in the presence of chitin. Our data suggest this phenomenon occurs through a mechanism that differs from PTS-transport of oligosaccharides generated from either degradation or chitinase-mediated hydrolysis of the polymer. Importantly, an indication that chitin can repress virulence expression of a constitutively active PrfA* mutant is shown, possibly mediated via a post-translational modification inhibiting PrfA* activity. To our knowledge, chitin as a molecule with anti-virulence properties against a pathogenic bacterium has not been previously reported. Thus, our findings identify chitin as a signal which may downregulate the virulence potential of the pathogen and may provide an alternative approach towards reducing disease risk.
Project description:The availability of genome sequence data has greatly enhanced our understanding of the adaptations of trypanosomatid parasites to their respective host environments. However, these studies remain somewhat restricted by modest taxon sampling, generally due to focus on the most important pathogens of humans. To address this problem, at least in part, we are releasing a draft genome sequence for the African crocodilian trypanosome, Trypanosoma grayi ANR4. This dataset comprises genomic DNA sequences assembled de novo into contigs, encompassing over 10,000 annotated putative open reading frames and predicted protein products. Using phylogenomic approaches we demonstrate that T. grayi is more closely related to Trypanosoma cruzi than it is to the African trypanosomes T. brucei, T. congolense and T. vivax, despite the fact T. grayi and the African trypanosomes are each transmitted by tsetse flies. The data are deposited in publicly accessible repositories where we hope they will prove useful to the community in evolutionary studies of the trypanosomatids.