Project description:Insect reproduction is extremely variable, but the implications of alternative genetic systems are often overlooked in studies on the evolution of insecticide resistance. Both ecotypes of Pediculus humanus (Phthiraptera: Pediculidae), the human head and body lice, are human ectoparasites, the control of which is challenged by the recent spread of resistance alleles. The present study conclusively establishes for the first time that both head and body lice reproduce through paternal genome elimination (PGE), an unusual genetic system in which males transmit only their maternally derived chromosomes. Here, we investigate inheritance patterns of parental genomes using a genotyping approach across families of both ecotypes and show that heterozygous males exclusively or preferentially pass on one allele only, whereas females transmit both in a Mendelian fashion. We do however observe occasional transmission of paternal chromosomes through males, representing the first known case of PGE in which whole-genome meiotic drive is incomplete. Finally, we discuss the potential implications of this finding for the evolution of resistance and invite the development of new theoretical models of how this knowledge might contribute to increasing the success of pediculicide-based management schemes.
Project description:BACKGROUND:Humans are parasitized by three types of lice: body, head and pubic lice. As their common names imply, each type colonizes a specific region of the body. The body louse is the only recognized disease vector. However, an increasing awareness of head lice as a vector has emerged recently whereas the status of pubic lice as a vector is not known since it has received little attention. METHODS:Here, we assessed the occurrence of bacterial pathogens in 107 body lice, 33 head lice and 63 pubic lice from Marseille and Bobigny (France) using molecular methods. RESULTS:Results show that all body lice samples belonged to the cytb Clade A whereas head lice samples belonged to Clades A and B. DNA of Bartonella quintana was detected in 7.5% of body lice samples and, for the first time to our knowledge, in 3.1% of pubic lice samples. Coxiella burnetii, which is not usually associated with transmission by louse, was detected in 3.7% of body lice samples and 3% of head lice samples. To the best of our knowledge, this is the first report of C. burnetii in Pediculus lice infesting humans in France. Acinetobacter DNA was detected in 21.5% of body lice samples, 6% of head lice samples and 9.5% of pubic lice samples. Five species were identified with A. baumannii being the most prevalent. CONCLUSIONS:Our study is the first to report the presence of B. quintana in pubic lice. This is also the first report of the presence of DNA of C. burnetii in body lice and head lice in France. Further efforts on the vectorial role of human lice are needed, most importantly the role of pubic lice as a disease vector should be further investigated.