Project description:Inactivating germline BRCA1 and BRCA2 mutations confer a defect in homologous recombination DNA repair which was found to leave traces in tumor DNA copy number aberration (CNA) profiles. In analogy to previously trained breast cancer CNA classifiers that predicted association with BRCA1 and BRCA2 mutated cancer and benefit of high dose double strand break inducing chemotherapy, we trained BRCA1 and BRCA2 classifiers on CNA profiles of 50 BRCA1 mutated, 10 BRCA2 mutated and 13 non-familial ovarian cancers and investigated whether tumor type and mutation type independent classifiers could be trained. The cross validated area under the curve of the receiver/operator characteristic curve of ovarian cancer BRCA1 and BRCA2 classifiers were 0.67 (95% CI: 0.55-0.78) and 0.91 (95% CI: 0.79-1). These classifiers identified the majority of the samples with germline and somatic BRCA1 and BRCA2 mutations and BRCA1 promoter hypermethylation in the Cancer Genome Atlas (TCGA) dataset. Combining tumor type or mutated gene did not yield higher AUCs than single gene classifiers, although the ovarian BRCA1+BRCA2 classifier identified most BRCA1 and -2 mutated cases, including those in the TCGA dataset, and a combined breast and ovarian cancer BRCA1 classifier may improve response prediction to double strand break inducing chemotherapy.
Project description:<p>The data come from 40 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). CIMBA recruits individuals with pathogenic mutations in BRCA1 or BRCA2. The majority of carriers were recruited through cancer genetics clinics offering genetic testing, and were enrolled into national or regional studies. The remainder were identified by population-based sampling of cases, or community recruitment. Eligibility to participate is restricted to carriers of pathogenic BRCA1/2 mutations who were 18 years or older at recruitment. Information collected included amongst other variables: age at recruitment; ages at breast and ovarian cancer diagnosis; and estrogen receptor (ER) status. Samples were genotyped using the Illumina OncoArray beadchip 500K SNP custom array. Details of the genotyping process and sample selection are included in Phelan et al, Identification of twelve new susceptibility loci for different histotypes of epithelial ovarian cancer, Nat Genet. 2017 May;49(5):680-691 <a href="https://www.ncbi.nlm.nih.gov/pubmed/?term=28346442" target="_blank"> (PMID:28346442)</a>, and Milne et al, Identification of ten variants associated with risk of estrogen receptor negative breast cancer, Nat Genet (in press). </p>
Project description:Molecular Profiling of BRCA1-and BRCA2-associated Breast Cancers Identifies FGFR2 as a Gene More Highly Expressed in BRCA2-associated Tumors BRCA1- and BRCA2-associated tumors have many morphologic characteristics in common, but appear to have distinct molecular signatures. BRCA1-associated tumors are predominantly basal-like cancers, whereas BRCA2-associated tumors have a predominant luminal-like phenotype. These two molecular signatures reflect in part the two cell types, basal/myoepithelial and luminal, found in the terminal duct lobular unit of the breast. To elucidate novel genes involved in these two spectra of breast cancer tumorigenesis we performed global gene expression analysis on breast tumors from germline BRCA1 and BRCA2 mutation carriers. Breast tumor RNAs from 7 germline BRCA1 and 6 germline BRCA2 carriers were profiled using UHN human 19K cDNA microarrays. Supervised univariate analyses were conducted to identify genes differentially expressed between BRCA1 and BRCA2-associated tumors. Selected discriminatory genes were validated using real time reverse transcription polymerase chain reaction (RT-PCR) in the tumor RNAs, and/or by immunohistochemistry (IHC) or by in situ hybridization (ISH) on tissue microarrays (TMAs) containing an independent set of 58 BRCA1 and 64 BRCA2-associated tumors. Genes more highly expressed in BRCA1-associated tumors included stathmin/oncoprotein 18, osteopontin, TGFß2 and Jagged 1 in addition to genes previously identified as characteristic of basal-like breast cancers. Genes more highly expressed in BRCA2-associated tumors had functions related to transcription, signal transduction (particularly MAPK signaling), cell proliferation, cell adhesion and extracellular matrix remodeling. BRCA2-associated cancers were characterized by the higher relative expression of amongst others, FGF1 and FGFR2. Tissue microarrays were used to validate the expression of FGFR2 protein by immunohistochemistry and Jagged 1 expression by in situ hybridization. BRCA2-associated cancers expressed higher levels of FGFR2 protein than BRCA1-associated cancers (p=0.004); whereas BRCA1-associated tumors exhibited elevated levels of Jagged1 mRNA compared to BRCA2-associated cancers (p=0.02). FGFR2 and FGF1 were more highly expressed in BRCA2-associated cancers compared with BRCA1-associated breast cancers, suggesting the existence of an autocrine or paracrine stimulatory loop. In addition to corroborating the basal-like signature of BRCA1-associated tumors, we identified osteopontin, stathmin/oncoprotein 18, TGFβ2, and Jagged 1 as being more highly expressed in BRCA1-associated tumors. Keywords: Gene expression profiling, genetic comparison
Project description:The functional consequences of missense variants in disease genes are difficult to predict. We assessed if gene expression profiles could distinguish between BRCA1 or BRCA2 pathogenic truncating and missense mutation carriers and familial breast cancer cases whose disease was not attributable to BRCA1 or BRCA2 mutations (BRCAX cases). 72 cell lines from affected women in high-risk breast-ovarian families were assayed after exposure to ionising irradiation, including 23 BRCA1 carriers, 22 BRCA2 carriers, and 27 BRCAX individuals. A subset of 10 BRCAX individuals carried rare BRCA1/2 sequence variants considered to be of low clinical significance (LCS). BRCA1 and BRCA2 mutation carriers had similar expression profiles, with some subclustering of missense mutation carriers. The majority of BRCAX individuals formed a distinct cluster, but BRCAX individuals with LCS variants had expression profiles similar to BRCA1/2 mutation carriers. Gaussian Process Classifier predicted BRCA1, BRCA2 and BRCAX status with a maximum of 62% accuracy, and prediction accuracy decreased with inclusion of BRCAX samples carrying an LCS variant, and inclusion of pathogenic missense carriers. Similarly, prediction of mutation status with gene lists derived using Support Vector Machines was good for BRCAX samples without an LCS variant (82-94%), poor for BRCAX with an LCS (40-50%), and improved for pathogenic BRCA1/2 mutation carriers when the gene list used for prediction was appropriate to mutation effect being tested (71-100%). This study indicates that mutation effect, and presence of rare variants possibly associated with a low risk of cancer, must be considered in the development of array-based assays of variant pathogenicity. Keywords: cell type comparison, stress response
Project description:Approximately 5% of all breast cancers can be attributed to an inherited mutation in one of two cancer susceptibility genes, BRCA1 and BRCA2. We searched for genes that have the potential to distinguish healthy BRCA1 and BRCA2 mutation carriers from non-carriers based on differences in expression profiling. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers. We identified 137 probe sets in BRCA1 carriers and 1345 in BRCA2 carriers with differential gene expression. Gene Ontology analysis revealed that most of these genes relate to regulation pathways of DNA repair processes, cell cycle regulation and apoptosis. Real-time PCR was performed on the 36 genes which were most prominently differentially expressed in the microarray assay; 21 genes were shown to be significantly differentially expressed in BRCA1 or BRCA2 mutation carriers as compared to controls (p<0.05). Based on a validation study with 40 mutation carriers and 17 non-carriers, a multiplex model that included six or more coincidental genes of 18 selected genes was constructed in order to predict the risk of carrying a mutation. The results using this model showed sensitivity 95% and specificity 88%. In summary, our study provides insight into the biological effect of heterozygous mutations in BRCA1 and BRCA2 genes in response to ionizing irradiation induced DNA damage. We also suggest a set of 18 genes that can be used as a prediction and screening tool for BRCA1 or BRCA2 mutational carriers by using easily obtained lymphocytes. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers Fresh blood samples were obtained from 9 BRCA1 and 8 BRCA2 mutation carriers and 9 mutation-negative women. Lymphocytes were collected from fresh blood samples, and RNA was extracted one hour after γ-irradiation
Project description:Use of DNA damaging agents and RNA pooling to assess expression profiles associated with BRCA1 and BRCA2 mutation status in familial breast cancer patients Background: A large number of rare sequence variants of unknown clinical significance have been identified in the breast cancer susceptibility genes, BRCA1 and BRCA2. Determining the functional effect of these variants as well as their role in breast cancer susceptibility can be challenging using current classification methods. Methodology/Principal Findings: To identify predictors of pathogenic mutation status in familial breast cancer patients, we explored the use of gene expression arrays to assess the effect of two DNA damaging agents (irradiation and mitomycin C) on cellular response in relation to BRCA1 and BRCA2 mutation status. A range of regimes were used to treat 27 lymphoblastoid cell-lines (LCLs) derived from affected women in high-risk breast cancer families (nine BRCA1, nine BRCA2, and nine non-BRCA1/2 or BRCAX individuals) and nine LCLs from healthy individuals. Using an RNA pooling strategy, we found that treating LCLs with 1.2 μM mitomycin C and measuring the gene expression profiles 1 hour post-treatment had the greatest potential to discriminate BRCA1, BRCA2 and BRCAX mutation status. A classifier was built using the expression profile of nine QRT-PCR validated genes that were associated with BRCA1, BRCA2 and BRCAX status in RNA pools. These nine genes could distinguish BRCA1 from BRCA2 carriers with 83% accuracy in individual samples, but three-way analysis for BRCA1, BRCA2 and BRCAX had a maximum of 59% prediction accuracy. Conclusions/Significance: Our results suggest that, compared to BRCA1 and BRCA2 mutation carriers, non-BRCA1/2 (BRCAX) individuals are genetically heterogeneous. This study also demonstrates the effectiveness of RNA pools to compare the expression profiles of cell-lines from BRCA1, BRCA2 and BRCAX cases after treatment with irradiation and mitomycin C as a method to prioritize treatment regimes for detailed downstream expression analysis.
Project description:Approximately 5% of all breast cancers can be attributed to an inherited mutation in one of two cancer susceptibility genes, BRCA1 and BRCA2. We searched for genes that have the potential to distinguish healthy BRCA1 and BRCA2 mutation carriers from non-carriers based on differences in expression profiling. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers. We identified 137 probe sets in BRCA1 carriers and 1345 in BRCA2 carriers with differential gene expression. Gene Ontology analysis revealed that most of these genes relate to regulation pathways of DNA repair processes, cell cycle regulation and apoptosis. Real-time PCR was performed on the 36 genes which were most prominently differentially expressed in the microarray assay; 21 genes were shown to be significantly differentially expressed in BRCA1 or BRCA2 mutation carriers as compared to controls (p<0.05). Based on a validation study with 40 mutation carriers and 17 non-carriers, a multiplex model that included six or more coincidental genes of 18 selected genes was constructed in order to predict the risk of carrying a mutation. The results using this model showed sensitivity 95% and specificity 88%. In summary, our study provides insight into the biological effect of heterozygous mutations in BRCA1 and BRCA2 genes in response to ionizing irradiation induced DNA damage. We also suggest a set of 18 genes that can be used as a prediction and screening tool for BRCA1 or BRCA2 mutational carriers by using easily obtained lymphocytes. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers