Project description:It is well-established that neurons in the adult mammalian central nervous system are terminally differentiated and, if injured, will be unable to regenerate their connections. In contrast to mammals, zebrafish and other teleosts display a robust neuroregenerative response. Following optic nerve crush (ONX), retinal ganglion cells (RGC) regrow their axons to synapse with topographically correct targets in the optic tectum, such that vision is restored in ~21 days. What accounts for these differences between teleostean and mammalian responses to neural injury is not fully understood. A time course analysis of global gene expression patterns in the zebrafish eye after optic nerve crush can help to elucidate cellular and molecular mechanisms that contribute to a successful neuroregeneration. We used microarrays to detail the global gene expression patterns underlying a successful regeneration or the optic nerve following injury. Experiment Overall Design: Microarray analysis was performed on total RNA extracted from whole eye following optic nerve crush (ONX) or sham surgery at defined intervals (4, 12, & 21 days).
Project description:Reactive gliosis is a complex process that involves profound changes in gene expression. We used microarray to indentify differentially expressed genes and to investigate the molecular mechanisms of reactive gliosis in optic nerve head in response to optic nerve crush injury. C57Bl/6 female mice were 6-8 weeks old at the time of optic nerve crush surgery. The optic nerve in the left eye was crush 1 mm behind the globe for 10 seconds and the right eye served as contralateral control. The animals were allowed to recover for 1 day, 3 day, 1 week, 3 weeks and 3 months before the optic nerve heads were collected. The naive control mice did not receive any surgery in either eye. Due to the small tissue size of the mouse optic nerve head, two optic nerve heads were pooled together for each microarray chip. The left eyes and the right eyes of two mice were combined respectively to form one pair of experiment and control samples. There were five biological replicates (10 mice) for each condition.
Project description:Transcriptomic changes in the pre-chiasmatic optic nerve, retrobulbar optic nerve and retina of goats 1 day after optic nerve crush injury
Project description:Transcriptomic changes in the pre-chiasmatic optic nerve, retrobulbar optic nerve of goats 1 day after hypothermia treatment of optic nerve crush injury
Project description:We used optic nerve injury as a model to study early signaling events in the neuronal soma following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs). The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury. We detected differences in phosphoproteins and gene expression within this time period that we used to interpret temporal events. Our studies revealed that the entire retina has been signaled by the RGC soma within 30 min after optic nerve injury and that pathways that modulate cell death are likely to be active in RGCs within 6 hrs following axonal injury Experiment Overall Design: In the treated animals, axons of the optic nerve were crushed with fine forceps for 10 sec, 1 mm posterior to the globe, under direct visualization, within an intact meningeal sheath. Controls were contralateral eyes from the same animals in each group that had not been injured. After 6 hr eyes were enucleated and processed for tissue sectionin
Project description:Reactive gliosis is a complex process that involves profound changes in gene expression. We used microarray to indentify differentially expressed genes and to investigate the molecular mechanisms of reactive gliosis in optic nerve head in response to optic nerve crush injury.
Project description:Reactive astrocytes are typically studied in models that cause irreversible mechanical damage to axons, neuronal cell bodies, and glia. We evaluated the response of astrocytes in the optic nerve head to a subtle injury induced by a brief, mild elevation of the intraocular pressure. Astrocytes demonstrated reactive remodeling showing hypertrophy, process retraction and simplification of their shape. We used microarray to indentify differentially expressed genes and to investigate the molecular mechanisms of astrogliosis in response to this subtle injury. Six- to eight-week old C57Bl/6 male mice were used in this experiment. One eye underwent an elevation in intraocular pressure to 30 mmHg for 1 hour and then allowed to recover for 3 days. The contralateral eye served as a control. Due to the small tissue size of the mouse optic nerve head, two optic nerve heads were pooled together for each microarray chip. We used 10 mice to generate five biological replicates for each condition.
Project description:To gain a better understanding of the factors necessary for successful CNS regeneration, a temporal analysis of the changes in gene expression in the eye caused by optic nerve injury was conducted. Dual color oligonucleotide microarrays were used to compare total RNA harvested from the eyes of sham-operated and optic nerve-injured fish at 3, 24, and 168 hours following surgery. Optic nerve injured fish are compared to sham-operated fish in order to eliminate gene expression due to non-neuronal damage and inflammatory response. Statistical analyses identified 131 genes with a 2.0-fold or greater difference in expression. Wild type zebrafish were obtained from a local pet store. Optic nerve injury was conducted using a severing model accomplished as follows. Zebrafish were anesthetized in 0.2% MS-222 dissolved in tank water. The muscles surrounding the eye were cut and the eye angled rostrally to expose the nerve. The optic nerve was then severed using microsissors without damaging the ophthalmic artery. In sham operated fish the muscles surrounding the eye were severed but the nerve was not damaged. RNA was extracted from the eye at three time points following surgery 3 hours, 24 hours, and 168 hours. RNA was pooled from multiple fish to achieve 10 ug total RNA. Samples were collected in triplicate per time point. Gene expression was analyzed on a dual color oligonucleotide array where the optic nerve injured fish were compared to sham-operated fish. Four samples of RNA were also collected from control fish and compared to each other on the microarray to confirm that processing did not create expression differences.
Project description:We used optic nerve injury as a model to study early signaling events in the neuronal soma following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs). The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury. We detected differences in phosphoproteins and gene expression within this time period that we used to interpret temporal events. Our studies revealed that the entire retina has been signaled by the RGC soma within 30 min after optic nerve injury and that pathways that modulate cell death are likely to be active in RGCs within 6 hrs following axonal injury Keywords: Stress Response