Project description:In this study, we attempt to characterize the transcriptomic profile of the Asian seabass gonads at various developmental stages. The protandric Asian seabass or barramundi (Lates calcarifer) typically matures as a male at approximately 2–4 years of age and then changes sex to a female in later years. For this experiment, Asian seabass of several ages were collected from the Marine Aquaculture Center of the Agri-Food & Veterinary Authority of Singapore and from farms around Singapore. There were no treatments carried out in this experiment. The gonads were examined by histology and classified according to sexual maturation status as described by Guiguen and colleagues (Guiguen et al. Environmental Biology of Fishes, 1994). Altogether, we analyzed 22 gonadal samples that could be classified into six different types of gonads.
Project description:In this study, we attempt to characterize the transcriptomic profile of the Asian seabass gonads at various developmental stages. The protandric Asian seabass or barramundi (Lates calcarifer) typically matures as a male at approximately 2M-bM-^@M-^S4 years of age and then changes sex to a female in later years. For this experiment, Asian seabass of several ages were collected from the Marine Aquaculture Center of the Agri-Food & Veterinary Authority of Singapore and from farms around Singapore. There were no treatments carried out in this experiment. The gonads were examined by histology and classified according to sexual maturation status as described by Guiguen and colleagues (Guiguen et al. Environmental Biology of Fishes, 1994). Altogether, we analyzed 22 gonadal samples that could be classified into six different types of gonads. Total 22 samples: Adult Ovaries (F3-stage; 5 years old fish) : 4 Adult Testes (M3-stage; 5 years old fish) : 4 Early Testes (M3-stage; 8-9 months old fish) : 3 Early Transforming Gonads (>2 years old fish) : 3 Late Transforming Gonads (>2 years old fish) : 4 Undifferentiated Gonads (4.5 months old fish) : 4
Project description:In this study, we attempt to characterize the transcriptomic profile of the Asian seabass brains collected from the male and female sexes. The objective is to identify genes that show sexually dimorphic expression in the brain of this species. For this experiment, Asian seabass were collected from the Marine Aquaculture Center of the Agri-Food & Veterinary Authority of Singapore. There were no treatments carried out in this experiment. Four brains from adult male seabass (5 years old) with M3-type testis and four brains from adult female seabass (5 years old) with F3-type ovaries were used in this experiment. (Gonads were examined by histology and classified according to sexual maturation status as described by Guiguen and colleagues (Guiguen et al. Environmental Biology of Fishes, 1994)).
Project description:In this study, we attempt to characterize the transcriptomic profile of the Asian seabass brains collected from the male and female sexes. The objective is to identify genes that show sexually dimorphic expression in the brain of this species. For this experiment, Asian seabass were collected from the Marine Aquaculture Center of the Agri-Food & Veterinary Authority of Singapore. There were no treatments carried out in this experiment. Four brains from adult male seabass (5 years old) with M3-type testis and four brains from adult female seabass (5 years old) with F3-type ovaries were used in this experiment. (Gonads were examined by histology and classified according to sexual maturation status as described by Guiguen and colleagues (Guiguen et al. Environmental Biology of Fishes, 1994)). Total 8 samples. Male Brain : 4 Female Brain : 4
Project description:Barramundi (Lates calcarifer) is an important farmed marine food fish species. Its compact genome (approximately 700 Mb) is among the smallest genomes of food fish species. We established a first-generation genetic linkage map of Barramundi with a mapping panel containing three parents (two males and one female) and 93 progeny. A total of 240 microsatellite markers were mapped into 24 linkage groups. Among these markers, 10 were located in ESTs and known genes. The total lengths of the female and male maps were 873.8 and 414.5 cM with an average marker spacing of 6.20 and 4.70 cM, respectively. Comparing the flanking sequences of the 240 Barramundi microsatellites with the assembled whole-genome sequences of Tetraodon nigrovidiris revealed 55 homologous sequences located in 19 of the 21 chromosomes of T. nigrovidiris. The map will not only enable the mapping of quantitative trait loci, but also provide new resources for understanding the evolution of fish genomes.
Project description:The complete RNA-1 and RNA-2 genome sequences of Betanodavirus were obtained from Australian barramundi (Lates calcarifer). Phylogenetic analyses revealed that the sequences have closest homology to the red spotted grouper nervous necrosis virus (RGNNV) species and share between 91 and 98% homology with the other two published complete/near-complete sequences of isolates from Australian fish.