Project description:The mRNA transcriptome and m6A methylation microarray profiling of mouse kidney tissues. Kidney tissues from the sham-operated group and unilateral ureteral ligation/obstruction (UUO) kidney tissues were compared. The latter were mainly fibrotic kidney tissues. The goal was to identify the effect of the renal fibrosis on gene expression and corresponding m6A modifications during kidney fibrosis.
Project description:The mRNA transcriptome and m6A methylation microarray profiling of mouse kidney tissues. Kidney tissues from the sham-operated group and unilateral ureteral ligation/obstruction (UUO) kidney tissues were compared. The latter were mainly fibrotic kidney tissues. The goal was to identify the effect of the renal fibrosis on gene expression and corresponding m6A modifications during kidney fibrosis.
Project description:In this study, we employed high-throughput RNA sequencing (RNA-Seq) to identify the Smad3-dependent lncRNAs related to renal inflammation and fibrosis in Smad3 knockout (KO) mouse models of unilateral ureteral obstructive nephropathy (UUO) and immunologically-induced anti-glomerular basement membrane glomerulonephritis (anti-GBM GN). 12 kidney tissue samples of Smad3 KO/WT mice from normal control, UUO at day 5 or anti-GBM GN at day 10 models (n=2 in each group) for whole transcriptome RNA-sequencing.
Project description:The long term goal is to define the transcriptional changes that accompany pericyte-to-myofibroblast transition in fibrotic kidney disease. Medullary pericytes are identified by their expression of a eGFPL10a fusion protein whose expression is driven by a Col1a1 promoter. Pericyte-specific RNA is generated by eGFP-affinity purification of polysomes from medullary lysates and then subject to microarray analysis. Col1a1-eGFPL10a mice were subject to Sham or unilateral ureteral obstruction surgery. Sham kidneys were collected at day 0, and UUO kidneys were collected at day 2 or day 5 for TRAP.
Project description:Small RNA sequencing of sorted cell type, mice kidneys, after unilateral ureteral obstructive (UUO) surgery after 2 days, 7 days and a reversible (rUUO) 14 day model with corresponding sham operated mice. The goal of the study is to identify micro-RNA dysregulation of expression between different cell types corresponding with kidney injury, in order to identify and assess biomarkers which could be translated into the clinical setting.
Project description:Label-free quantitative proteomics for mouse kidney tissue of UUO vs Sham was used for discovery of differential expressed proteins in the process of renal fibrosis. Compared to sham mice, we found that 216 upregulated proteins and 215 downregulated proteins in UUO mice according to fold change ≥ 5, adjusted-p ≤ 0.01. Then, we will study the potential mechanism according to differential expressed proteins.
Project description:Tissue inhibitors of metalloproteinases (TIMP) are endogenous inhibitors of matrix metalloproteinases (MMP). While TIMP2 and TIMP3 inhibit MMPs, TIMP3 also inhibits activation of pro-MMP2 whereas TIMP2 promotes it. Here we assessed the differential role of TIMP2 and TIMP3 in renal injury using the unilateral ureteral obstruction model. Gene microarray assay showed that post-obstruction, the lack of TIMP3 had a greater impact on gene expression of intermediate, late injury- and repair-induced transcripts, kidney selective transcripts and solute carriers. Renal injury in TIMP3-/-, but not in TIMP2-/- mice increased expression of collagen type I/III, connective tissue growth factor, transforming growth factor-β and the downstream Smad2/3 pathway. Interestingly, ureteral obstruction markedly increased MMP2 activation in the kidneys of TIMP3-/- mice which was completely blocked in the kidneys of TIMP2-/- mice. These changes are consistent with enhanced renal tubulointerstitial fibrosis in TIMP3-/- and its reduction in TIMP2-/- mice. The activity of tumor necrosis factor-α converting enzyme, caspase-3 and mitogen activated kinases were elevated in the kidneys of TIMP3-/- but not TIMP2-/- mice, suggesting enhanced activation of apoptotic and pathological signaling pathways only in the obstructed kidney of TIMP3-/- mice. Thus, TIMP2 and TIMP3 play differential and contrasting roles in renal injury, TIMP3 protects from damage whereas TIMP2 promotes injury through MMP2 activation. Kidneys from the wild type (WT), TIMP2-/- and TIMP3-/- mice undergoing sham or unilateral ureteral obstruction (UUO) procedures