Project description:We report change in the nucleosome occupancy and accessibility upon deletion of ATP-dependent chromatin remodellers (ISW1, ISW2 & CHD1) in Saccharomyces cerevisiae.
Project description:Nonylphenol (NP), is a bioaccumulative environmental estrogen that is widely used as a nonionic surfactant. We have previously examined short-term effects of NP on yeast cells using microarray technology. In the present study, we investigated the long-term impacts of NP on Saccharomyces cerevisiae BY4742 cells by analyzing genome-wide transcriptional profiles using RNA-sequencing. We used 2 mg/L NP concentration exposure for 40 days. Gene expression analysis showed that a total of 948 genes were differentially expressed. Of these, 834 genes were downregulated, while 114 genes were significantly upregulated. GO enrichment analysis revealed that 369 GO terms were significantly affected by NP exposure. Further analysis showed that many of the differentially expressed genes were associated with oxidative phosphorylation, iron and copper acquisition, autophagy, pleiotropic drug resistance and cell cycle progression and related processes such as DNA and mismatch repair, chromosome segregation, spindle checkpoint activity, and kinetochore organization. Overall, these results provide considerable information and a comprehensive understanding of the long-term effects of NP at the gene expression level.
Project description:We report change in the chromatin contacts upon deletion of ATP-dependent chromatin remodellers (ISW1, ISW2 and CHD1) in Saccharomyces cerevisiae.
Project description:A six array study using total gDNA recovered from two separate cultures of each of three different strains of Saccharomyces cerevisiae (YB-210 or CRB, Y389 or MUSH, and Y2209 or LEP) and two separate cultures of Saccharomyces cerevisiae DBY8268. Each array measures the hybridization of probes tiled across the Saccharomyces cerevisiae genome.
Project description:We report change in the chromatin contacts at nucleosomal resolution upon deletion of ATP-dependent chromatin remodellers(Isw1,Isw2 and Chd1) in Saccharomyces cerevisiae.
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:Reprogramming a non-methylotrophic industrial host, such as Saccharomyces cerevisiae, to a synthetic methylotroph reprents a huge challenge due to the complex regulation in yeast. Through TMC strategy together with ALE strategy, we completed a strict synthetic methylotrophic yeast that could use methanol as the sole carbon source. However, how cells respond to methanol and remodel cellular metabolic network on methanol were not clear. Therefore, genome-scale transcriptional analysis was performed to unravel the cellular reprograming mechanisms underlying the improved growth phenotype.