Project description:Clostridium acetobutylicum is a Gram-positive, endospore-forming bacterium that is considered as a strict anaerobe. It ferments sugars to the organic acids acetate and butyrate or shifts to formation of the solvents - ethanol, butanol and acetone. In most bacteria the major regulator of iron homeostasis is Fur (ferric uptake regulator). Analysis of the genome of Clostridium acetobutylicum has revealed three genes encoding Fur-like proteins. The amino acid sequece of one of them showed 70% similarity to the Fur protein of the closely related Bacillus subtilis.<br>Thus, to gain insight into the role of Fur and the mechanisms for maintenance of iron homeostasis in this strict anaerobic organism, we determined its transcriptional profile in response to iron limitation and inactivation of fur.
Project description:Purpose: Analyze gene expression during C. perfringens colonization in the chicken Transcriptomic profile of mRNA from C. perfrinegns from in vivo and in vitro conditions were determined in biological duplicates by RNA-Seq using Illumina HiSeq 2500
Project description:Primary outcome(s): 1. Evaluation of genome abnormality and gene expression by omics analysis of tumor etc. 2. TCR repertoire analysis and RNA expression analysis etc. of T cells in tumor tissue and peripheral blood. 3. Prediction and identification of tumor neo-antigen and evaluation of immunogenicity etc. 4. Analyze ctDNA(16S rRNA PCR) and feces of patients with advanced solid malignancies over time to profile and monitor cancer-related genomic alterations 5. Assessment of the relationship between the analysis above and clinical pathological features or therapeutic efficacy etc.
Project description:Previous studies have demonstrated that the iron content in marine heterotrophic bacteria is comparatively higher than that of phytoplankton. Therefore, they have been indicated to play a major role in the biogeochemical cycling of iron. In this study, we aimed to investigate the potential of viral lysis as a source of iron for marine heterotrophic bacteria. Viral lysates were derived from the marine heterotrophic bacterium, Vibrio natriegens PWH3a (A.K.A Vibrio alginolyticus). The bioavailability of Fe in the lysates was determined using a model heterotrophic bacterium, namely, Dokdonia sp. strain Dokd-P16, isolated from Fe-limited waters along Line P transect in the Northeastern Pacific Ocean. The bacteria were grown under Fe-deplete or Fe-replete conditions before being exposed to the viral lysate. Differential gene expression following exposure to the viral lysate was analyzed via RNA sequencing to identify differentially expressed genes under iron-replete and iron-deplete conditions. This study would provide novel insights into the role of viral lysis in heterotrophic bacteria in supplying bioavailable iron to other marine microorganisms under iron-limiting and non-limiting conditions. First, the marine heterotrophic bacterium genome, Dokdonia sp. strain Dokd-P16, was sequenced to provide a genomic context for the expression studies. Subsequently, the relative gene expression in Dokdonia sp. strain Dokd-P16 grown under Fe limiting and non-limiting conditions were analyzed. This transcriptomic approach would be utilized to elucidate genes regulated by Fe availability in Dokdonia sp. strain Dokd-P16, which indicate its Fe-related response viral lysate exposure. Taken together, in this study, the transcriptomic responses of Fe-limited and non-limited marine heterotrophic bacteria were analyzed, which provided novel insights into the biological availability of Fe from the viral lysates.
Project description:Higher alcohols such as butanol (C4 alcohol) and hexanol (C6 alcohol) are superior biofuels compared to ethanol. Clostridium carboxidivorans P7 is a typical acetogen capable of producing C4 and C6 alcohols natively. In this study, the composition of trace metals in culture medium was adjusted, and the effects of these adjustments on artificial syngas fermentation by C. carboxidivorans P7 were investigated. Nickel and ferrous ions were essential for growth and metabolite synthesis during syngas fermentation by P7. However, a decreased dose of molybdate improved alcohol fermentation performance by stimulating carbon fixation and solventogenesis. In response to the modified trace metal composition, cells grew to a maximum OD600 nm of 1.6 and accumulated ethanol and butanol to maximum concentrations of 2.0 and 1.0 g/L, respectively, in serum bottles. These yields were ten-fold higher than the yields generated using the original composition of trace metals. Furthermore, 0.5 g/L of hexanol was detected at the end of fermentation. The results from gene expression experiments examining genes related to carbon fixation and organic acid and solvent synthesis pathways revealed a dramatic up-regulation of the Wood-Ljungdahl pathway (WLP) gene cluster, the bcs gene cluster, and a putative CoA transferase and butanol dehydrogenase, thereby indicating that both de novo synthesis and acid re-assimilation contributed to the significantly elevated accumulation of higher alcohols. The bdh35 gene was speculated to be the key target for butanol synthesis during solventogenesis.
Project description:Recombinant formate dehydrogenase from the acetogen Clostridium carboxidivorans strain P7(T), expressed in Escherichia coli, shows particular activity towards NADH-dependent carbon dioxide reduction to formate due to the relative binding affinities of the substrates and products. The enzyme retains activity over 2 days at 4°C under oxic conditions.
Project description:Increasing demand for the production of renewable fuels has recently generated a particular interest in microbial production of butanol. Anaerobic bacteria, such as Clostridium spp., can naturally convert carbohydrates into a variety of primary products, including alcohols like butanol. The genetics of microorganisms like Clostridium acetobutylicum have been well studied and their solvent-producing metabolic pathways characterized. In contrast, less is known about the genetics of Clostridium spp. capable of converting syngas or its individual components into solvents. In this study, the type of strain of a new solventogenic Clostridium species, C. carboxidivorans, was genetically characterized by genome sequencing. C. carboxidivorans strain P7(T) possessed a complete Wood-Ljungdahl pathway gene cluster, involving CO and CO(2) fixation and conversion to acetyl-CoA. Moreover, with the exception of an acetone production pathway, all the genetic determinants of canonical ABE metabolic pathways for acetate, butyrate, ethanol and butanol production were present in the P7(T) chromosome. The functionality of these pathways was also confirmed by growth of P7(T) on CO and production of CO(2) as well as volatile fatty acids (acetate and butyrate) and solvents (ethanol and butanol). P7(T) was also found to harbour a 19 Kbp plasmid, which did not include essential or butanol production related genes. This study has generated in depth knowledge of the P7(T) genome, which will be helpful in developing metabolic engineering strategies to improve C. carboxidivorans's natural capacity to produce potential biofuels from syngas.
Project description:The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism in many bacteria. However, the full regulatory potential of Fur beyond iron metabolism remains undefined. Here, we comprehensively reconstructed the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements (ChIP-exo and RNA-seq). Polyomic data analysis revealed that a total of 81 genes in 42 transcription units (TUs) are directly regulated by three different modes of Fur regulation, including apo- and holo-Fur activation as well as holo-Fur repression. We showed that Fur connects iron transport and utilization enzymes with negative-feedback loop pairs for iron homeostasis. In addition, direct involvement of Fur in the regulation of DNA synthesis, energy metabolism, and biofilm development was found. These results indicate that Fur exhibits a comprehensive regulatory role affecting many fundamental cellular processes linked to iron metabolism in order to coordinate E. coli responses to the availability of iron. [ChIP-exo]: A total of twelve samples were analyzed. WT and Fur-8-myc tagged cells were cultured in the presense and absence of iron with biological duplicates. To analyze static RNAP binding, rifampicin was also added to the media with biological duplicates. DPD = iron chelator.