Project description:The purple sulfur bacterium Allochromatium vinosum DSM 180T is one of the best studied sulfur-oxidizing anoxygenic phototrophic bacteria and has been developed into a model organism for laboratory-based studies of oxidative sulfur metabolism. Here, we took advantage of the organism’s high metabolic versatility and performed whole-genome transcriptional profiling to investigate the response of A. vinosum cells upon exposure to sulfide, thiosulfate, elemental sulfur or sulfite as compared to photoorganoheterotrophic growth on malate. Differential expression (at least twofold) of 1149 genes was observed, corresponding to 30% of the A. vinosum genome. A total of 549 genes were identified for which relative transcription increased at least twofold during growth on one of the different sulfur sources while relative transcription of 599 genes decreased. A significant number of genes that were strongly induced have documented sulfur-metabolism-related functions. Among these are the dsr genes including dsrAB for dissimilatory sulfite reductase and the sgp genes for the proteins of the sulfur globule envelope thus confirming former results. In addition we were able to identify new genes encoding proteins with appropriate subcellular localization and properties to participate in oxidative dissimilatory sulfur metabolism. Two of these were chosen for inactivation and phenotypic analyses of the respective mutant strains. This approach verified the importance of the encoded proteins for the oxidation of sulfide and thereby also documented the suitability of comparative transcriptomics for the identification of new sulfur-related genes in anoxygenic phototrophic sulfur bacteria.
Project description:The purple sulfur bacterium Allochromatium vinosum DSM 180T is one of the best studied sulfur-oxidizing anoxygenic phototrophic bacteria and has been developed into a model organism for laboratory-based studies of oxidative sulfur metabolism. Here, we took advantage of the organism’s high metabolic versatility and performed whole-genome transcriptional profiling to investigate the response of A. vinosum cells upon exposure to sulfide, thiosulfate, elemental sulfur or sulfite as compared to photoorganoheterotrophic growth on malate. Differential expression (at least twofold) of 1149 genes was observed, corresponding to 30% of the A. vinosum genome. A total of 549 genes were identified for which relative transcription increased at least twofold during growth on one of the different sulfur sources while relative transcription of 599 genes decreased. A significant number of genes that were strongly induced have documented sulfur-metabolism-related functions. Among these are the dsr genes including dsrAB for dissimilatory sulfite reductase and the sgp genes for the proteins of the sulfur globule envelope thus confirming former results. In addition we were able to identify new genes encoding proteins with appropriate subcellular localization and properties to participate in oxidative dissimilatory sulfur metabolism. Two of these were chosen for inactivation and phenotypic analyses of the respective mutant strains. This approach verified the importance of the encoded proteins for the oxidation of sulfide and thereby also documented the suitability of comparative transcriptomics for the identification of new sulfur-related genes in anoxygenic phototrophic sulfur bacteria.
Project description:Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genome amplification and metagenomics to retrieve draft genomes of three marine Candidatus Electrothrix and one freshwater Ca. Electronema species. These genomes contain >50% of unknown genes but still largely share their core genomic makeup with sulfate-reducing and sulfur-disproportionating Desulfobulbaceae, with few genes lost and 212 unique genes conserved among cable bacteria. Last common ancestor analysis indicated gene divergence and lateral gene transfer as equally important origins of these unique genes. With support from metaproteomic data of Ca. Electronema, the genomes suggest that cable bacteria oxidize sulfide by inversing the canonical sulfate reduction pathway and fix CO2 using the Wood-Ljungdahl pathway. Cable bacteria show limited organotrophic potential, may assimilate smaller organic acids and alcohols, fix N2, and synthesize polyphosphates and polyglucose as storage compounds; several of these traits were confirmed by cell-level experimental analyses. We propose a model for electron flow from sulfide to oxygen that involves periplasmic cytochromes, type IV pili as integral components of conductive periplasmic fibers, and periplasmic oxygen reduction. This model proposes that an active cable bacterium gains energy in the anodic, sulfide-oxidizing cells, while cells in the oxic zone flare off electrons through intense cathodic oxygen respiration without energy conservation; this peculiar form of multicellularity seems unparalleled in the microbial world.
Project description:Bacteria have evolved many strategies to spare energy when nutrients become scarce. One widespread such strategy is facultative phototrophy, which helps heterotrophs supplement their energy supply using light. Our knowledge on the impact that such behaviors have on bacterial fitness and physiology is, however, still limited. Here, we study how a representative of the genus Porphyrobacter, in which aerobic anoxygenic phototrophy is ancestral, responds to different light regimes under nutrient limitation. We show that bacterial survival in stationary phase relies on functional reaction centers and varies depending on the light regime. Under dark‑light alternance, our bacterial model presents a diphasic life history dependent on phototrophy: during dark phases, the cells inhibit DNA replication and part of the population lyses and releases nutrients, while subsequent light phases allow for the recovery and renewed growth of the surviving cells. We correlate these cyclic variations with a pervasive pattern of rhythmic transcription which reflects global changes in diurnal metabolic activity. Finally, we demonstrate that, compared to either a phototrophy null mutant or a bacteriochlorophyll a overproducer, the wild type strain is better adapted to natural environments, where regular dark‑light cycles are interspersed with additional accidental dark episodes. Overall, our results highlight the importance of light‑induced biological rhythms in a new model of aerobic anoxygenic phototroph representative of an ecologically important group of environmental bacteria.
Project description:The purple sulfur bacterium Allochromatium vinosum DSM 180T is one of the best studied sulfur-oxidizing anoxygenic phototrophic bacteria and has been developed into a model organism for laboratory-based studies of oxidative sulfur metabolism. Here, we took advantage of the organismM-bM-^@M-^Ys high metabolic versatility and performed whole-genome transcriptional profiling to investigate the response of A. vinosum cells upon exposure to sulfide, thiosulfate, elemental sulfur or sulfite as compared to photoorganoheterotrophic growth on malate. Differential expression (at least twofold) of 1149 genes was observed, corresponding to 30% of the A. vinosum genome. A total of 549 genes were identified for which relative transcription increased at least twofold during growth on one of the different sulfur sources while relative transcription of 599 genes decreased. A significant number of genes that were strongly induced have documented sulfur-metabolism-related functions. Among these are the dsr genes including dsrAB for dissimilatory sulfite reductase and the sgp genes for the proteins of the sulfur globule envelope thus confirming former results. In addition we were able to identify new genes encoding proteins with appropriate subcellular localization and properties to participate in oxidative dissimilatory sulfur metabolism. Two of these were chosen for inactivation and phenotypic analyses of the respective mutant strains. This approach verified the importance of the encoded proteins for the oxidation of sulfide and thereby also documented the suitability of comparative transcriptomics for the identification of new sulfur-related genes in anoxygenic phototrophic sulfur bacteria. In this study, the relative genomic expression profiles of A. vinosum DSM 180T growing photolithoautotrophically on different reduced sulfur compounds were determined in comparison to those of cells grown photoorganoheterothrophically on malate (RCV medium) at exactly the same light intensity. The malate-containing medium was supplied with 0.815 mM sulfate in order to satisfy the sulfur-requirement for biosynthesis of sulfur-containing cell constituents. Three independent photolithoautotrophic cultures each, grown on sulfide, thiosulfate or sulfite were harvested 1 h, 2 h or 7 h, respectively, after inoculation. When elemental sulfur was the substrate, four independent cultures were harvested 3 h after inoculation.