Project description:We investigated the ascomycete truffle Tuber melanosporum exploits DNA methylation and transcription to cope with the more than 45,000 repeated elements that are present in its genome. Whole-genome bisulfite sequencing and RNA-sequencing, were performed on different developmental stages of this symbiotic hypogeous fungus -fruitbody (FB), free-living mycelium (FLM), and ectomycorrhiza. Examination of DNA methylation and transcription of truffle in its free living mycelium (FLM), fruit body (FB), and ectomycorrhizal root tips (ECM)
Project description:We investigated the ascomycete truffle Tuber melanosporum exploits DNA methylation and transcription to cope with the more than 45,000 repeated elements that are present in its genome. Whole-genome bisulfite sequencing and RNA-sequencing, were performed on different developmental stages of this symbiotic hypogeous fungus -fruitbody (FB), free-living mycelium (FLM), and ectomycorrhiza.
Project description:The Transcriptome of different tissues and developmental stages of Tuber melanosporum was analyzed. The array probes were designed from gene models taken from the French Genoscope - Centre National de Séquençage Tuber melanosporum genome sequence version 1. One aim of this study was to verify the expression of the automatically annotated gene models in various tissues and to use this transcriptional information to confirm, to correct or to reject gene models. Another goal was to identify tissue-specific gene expression, e.g. mycorrhiza up-regulated transcripts or fruiting body up-regulated transcripts for further detailed analyses.
Project description:The aroma attributes of sulfurous, mushroom and earthy are the most important characteristics of the aroma of Tuber melanosporum. However, these three aroma attributes are absent in the T. melanosporum fermentation system. To improve the quality of the aroma, repeated freeze-thaw treatment (RFTT) was adopted to affect the interplay of volatile organic compounds (VOCs). Using RFTT, not only was the score on the hedonic scale of the aroma increased from the "liked slightly" to the "liked moderately" grade, but the aroma attributes of sulfurous, mushroom and earthy could also be smelled in the T. melanosporum fermentation system for the first time. A total of 29 VOCs were identified, and 9 compounds were identified as the key discriminative volatiles affected by RFTT. Amino acid analysis revealed that methionine, valine, serine, phenylalanine, isoleucine and threonine were the key substrates associated with the biosynthesis of the 9 key discriminative VOCs. This study noted that amino acid metabolism played an important role in the regulation of the aroma of the T. melanosporum fermentation system.
Project description:A survey of the truffle Tuber melanosporum genome has shown the presence of 67 programmed cell death (PCD)-related genes. The 67 genes are all expressed during fruit body (FB) development of T. melanosporum development; their expression has been detected by DNA microarrays and qPCR. A set of 14 PCD-related genes have been chosen, those with the highest identities to the homologs of other species, for a deeper investigation. That PCD occurs during T. melanosporum development has been demonstrated by the TUNEL reaction and transmission electron microscopy. The findings of this work, in addition to the discovery of PCD-related genes in the T. melanosporum genome and their expression during the differentiation and development of the FB, would suggest that one of the PCD subroutines, maybe autophagy, is involved in the FB ripening, i.e., sporogenesis.