Project description:Harmful algal blooms, caused by rapid growth and accumulation of certain microalgae in the ocean, pose considerable impacts on marine environments, aquatic industries and even public health. Here, we present the 7.2-megabase genome of the marine bacterium Hahella chejuensis including genes responsible for the biosynthesis of a pigment which has the lytic activity against a red-tide dinoflagellate. H.chejuensis is the first sequenced species in the Oceanospiralles clade, and sequence analysis revealed its distant relationship to the Pseudomonas group. The genome was well equipped with genes for basic metabolic capabilities and contained a large number of genes involved in regulation or transport as well as with characteristics as a marine heterotroph. Sequence analysis also revealed a multitude of genes of functional equivalence or of possible foreign origin. Functions encoded in the genomic islands include biosynthesis of exopolysacchrides, toxins, polyketides or non-ribosomal peptides, iron utilization, motility, type III protein secretion and pigmentation. Molecular structure of the algicidal pigment, which was determined through LC-ESI-MS/MS and NMR analyses, indicated that it is prodigiosin. In conclusion, our work provides new insights into mitigating algal blooms in addition to genetic make-up, physiology, biotic interactions and biological roles in the community of a marine bacterium.
Project description:Background: Ependymomas encompass multiple, clinically relevant tumor types based on localization and molecular profiles. Although tumors of the methylation class “spinal ependymoma” (SP-EPN) represent the most common intramedullary neoplasms in children and adults, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical meaning have been described in a large, epigenetically defined series. Methods: We mapped SP-EPN transcriptomes (n=76) to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. In addition, transcriptomic, epigenetic (n=234), genetic (n=140), and clinical analyses (n=115) were integrated for a detailed overview on this entity. Results: Integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord identified mature adult ependymal cells to display highest similarities to SP-EPN. Unsupervised hierarchical clustering of tumor data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype 1 predominantly contained NF2 wild type sequences with regular NF2 expression but revealed more extensive copy number alterations. Subtype 2 harbored previously known germline or sporadic NF2 mutations and was NF2-deficient in most cases, more often showed multilocular disease, and demonstrated a significantly reduced progression-free survival. Conclusion: Based on integrated molecular profiling of a large tumor series we identify two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.