Project description:This SuperSeries is composed of the following subset Series: GSE30652: Recurrent Variations in DNA Methylation in Human Pluripotent Stem Cells and their Differentiated Derivatives [Illumina HT12v3 Gene Expression] GSE30653: Recurrent Variations in DNA Methylation in Human Pluripotent Stem Cells and their Differentiated Derivatives [Illumina Infinium 27K DNA Methylation] GSE31848: Recurrent Variations in DNA Methylation in Human Pluripotent Stem Cells and their Differentiated Derivatives [Illumina Infinium 450K DNA Methylation] Refer to individual Series
Project description:Human pluripotent stem cells hold great potential for regenerative medicine, but existing cell types have imitations. Human embryonic stem cells derived from fertilized embryos (IVF-ESCs) are considered the “gold standard”, but are allogeneic to potential recipients. Autologous induced pluripotent stem cells (iPSCs) can be produced from somatic cells by forced expression of pluripotency-associated factors, but are prone to genetic and epigenetic aberrations. To determine whether accumulation of such aberrations is intrinsic to somatic cell reprogramming, or secondary to the reprogramming method, we employed an alternative approach by somatic cell nuclear transfer (SCNT). SCNT-based reprogramming to NT-ESCs is mediated by factors present in oocyte’s cytoplasm, thus mimicking early embryogenesis. We generated genetically matched pluripotent stem cells and conducted genome-wide genetic, epigenetic and transcriptional analyses. We discovered that unlike iPSCs, NT-ESCs have a low burden of de novo copy number variations (CNVs), reflecting superior maintenance of genetic stability. Moreover, DNA methylation and transcriptome profiles of NT-ESCs corresponded closely to those of IVF-ESCs. In contrast, iPSCs harbored methylation abnormalities including residual CpG methylation typical of parental fibroblasts, suggesting incomplete reprogramming. We conclude that human somatic cells can be faithfully reprogrammed to pluripotency by SCNT with the potential to satisfy the clinical requirements for cell replacement therapies. Bisulphite converted DNAs of two IVF-ESCs, two sendai produced iPSC lines, two retro-virus produced iPSC lines, four NT-ESCs, and the parental fibroblast were hybridized to the Illumina Infinium HumanMethylation 450K Beadchip
Project description:There are a total of four samples each for this analysis. Each sample consists of the cells grown on three 10 cm culture plates. Each plate should have 2x106 cells for a total of 6x106 cells per sample when all three plates are combined. The first sample is undifferentiated human embryonic stem cells, the second sample is human glutamatergic neurons derived from those human embryonic stem cells, the third sample is undifferentiated human induced pluripotent stem cells and the fourth sample is human glutamatergic neurons derived from those human induced pluripotent stem cells.
Project description:Human pluripotent stem cells can be derived from somatic cells by forced expression of defined factors, and more recently by nuclear-transfer into human oocytes, revitalizing a debate on whether one reprogramming approach might be advantageous over the other. Here we compared the genetic and epigenetic stability of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal and adult origin. Both cell types shared similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs have comparable numbers of de novo coding mutations but significantly higher than parthenogenetic ESCs. Similar to iPSCs NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes, similarly to iPSCs. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of the underlying technique. Genome-wide DNA methylation profiling by Illumina Infinium HumanMethylation 450K Beadchip was performed on a total of 21 human cell lines, including: an isogenic set of 3 nuclear-transfer embryonic stem cell (NT-ESC) lines, 2 RNA-reprogrammed induced pluripotent stem cell (iPSC) lines and their parental neonatal fibroblast cell line; an isogenic set of 1 NT-ESC line, 6 iPSC lines and their parental adult fibroblast cell line (derived from a type 1 diabetic subject); as well as 7 control embryonic stem cell (ESC) lines.
Project description:Human pluripotent stem cells hold great potential for regenerative medicine, but existing cell types have imitations. Human embryonic stem cells derived from fertilized embryos (IVF-ESCs) are considered the “gold standard”, but are allogeneic to potential recipients. Autologous induced pluripotent stem cells (iPSCs) can be produced from somatic cells by forced expression of pluripotency-associated factors, but are prone to genetic and epigenetic aberrations. To determine whether accumulation of such aberrations is intrinsic to somatic cell reprogramming, or secondary to the reprogramming method, we employed an alternative approach by somatic cell nuclear transfer (SCNT). SCNT-based reprogramming to NT-ESCs is mediated by factors present in oocyte’s cytoplasm, thus mimicking early embryogenesis. We generated genetically matched pluripotent stem cells and conducted genome-wide genetic, epigenetic and transcriptional analyses. We discovered that unlike iPSCs, NT-ESCs have a low burden of de novo copy number variations (CNVs), reflecting superior maintenance of genetic stability. Moreover, DNA methylation and transcriptome profiles of NT-ESCs corresponded closely to those of IVF-ESCs. In contrast, iPSCs harbored methylation abnormalities including residual CpG methylation typical of parental fibroblasts, suggesting incomplete reprogramming. We conclude that human somatic cells can be faithfully reprogrammed to pluripotency by SCNT with the potential to satisfy the clinical requirements for cell replacement therapies.
Project description:Human pluripotent stem cells can be derived from somatic cells by forced expression of defined factors, and more recently by nuclear-transfer into human oocytes, revitalizing a debate on whether one reprogramming approach might be advantageous over the other. Here we compared the genetic and epigenetic stability of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal and adult origin. Both cell types shared similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs have comparable numbers of de novo coding mutations but significantly higher than parthenogenetic ESCs. Similar to iPSCs NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes, similarly to iPSCs. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of the underlying technique. RNA sequencing analysis was performed on a total of 12 human cell lines, including: an isogenic set of 3 nuclear-transfer embryonic stem cell (NT-ESC) lines, 2 RNA-reprogrammed induced pluripotent stem cell (iPSC) lines and their parental neonatal fibroblast cell line; an isogenic set of 1 NT-ESC line, 3 iPSC lines and their parental adult fibroblast cell line (derived from a type 1 diabetic subject); as well as 1 control embryonic stem cell (ESC) line.