Project description:BACKGROUND:Apple canker is a devastating branch disease caused by Valsa mali (Vm). The endophytic actinomycete Saccharothrix yanglingensis Hhs.015 (Sy Hhs.015) can effectively inhibit the growth of Vm. To reveal the mechanism, by which Vm respond to Sy Hhs.015, the transcriptome of Vm was analyzed using RNA-seq technology. RESULTS:Compared with normal growing Vm in the control group, 1476 genes were significantly differentially expressed in the Sy Hhs.015's treatment group, of which 851 genes were up-regulated and 625 genes were down-regulated. Combined gene function and pathway analysis of differentially expressed genes (DEGs) revealed that Sy Hhs.015 affected the carbohydrate metabolic pathway, which is utilized by Vm for energy production. Approximately 82% of the glycoside hydrolase genes were down-regulated, including three pectinase genes (PGs), which are key pathogenic factors. The cell wall structure of Vm was disrupted by Sy Hhs.015 and cell wall-related genes were found to be down-regulated. Of the peroxisome associated genes, those encoding catalase (CAT) and superoxide dismutase (SOD) which scavenge reactive oxygen species (ROS), as well as those encoding AMACR and ACAA1 which are related to the ?-oxidation of fatty acids, were down-regulated. MS and ICL, key genes in glyoxylate cycle, were also down-regulated. In response to the stress of Sy Hhs.015 exposure, Vm increased amino acid metabolism to synthesize the required nitrogenous compounds, while alpha-keto acids, which involved in the TCA cycle, could be used to produce energy by deamination or transamination. Retinol dehydrogenase, associated with cell wall dextran synthesis, and sterol 24-C-methyltransferase, related to cell membrane ergosterol synthesis, were up-regulated. The genes encoding glutathione S-transferase, (GST), which has antioxidant activity and ABC transporters which have an efflux function, were also up-regulated. CONCLUSION:These results show that the response of Vm to Sy Hhs.015 exposure is a complicated and highly regulated process, and provide a theoretical basis for both clarifying the biocontrol mechanism of Sy Hhs.015 and the response of Vm to stress.
Project description:Abstract: Apple tree canker infected by Valsa mali var. mali is a serious and widely distributed disease in China. Saccharothrix yanglingensis Hhs.015 is an endophytic actinomycete isolated from cucumber roots, and it has been proven that this strain is a promising biocontrol agent on apple tree canker in previous studies. The aim of this study was to elucidate the active ingredients in its metabolites. Two pentaene macrolides, WH01 and WH02, were isolated from strain Hhs.015, and their structures were elucidated based on the extensive spectroscopic analysis. WH01 and WH02 were identified as fungichromin and 1'-deoxyfungichromin, among which WH02 is a novel compound. These two compounds showed strong in vitro and in vivo antifungal activity against V. mali. By comparison of the structures of hyphae cells treated by pure compound and fermentation broth, it has been proven that pentaene macrolides are the main active ingredients in the metabolites of strain Hhs.015. This is the first report on the antifungal activity of fungichromin and its analogs on V. mali, and the 28-member pentaene macrolides were also firstly isolated from the genus of Saccharothrix.
Project description:Previously, we reported the biocontrol effects of Saccharothrix yanglingensis strain Hhs.015 on Valsa mali. Here, we report a novel protein elicitor BAR11 from the biocontrol strain Hhs.015 and its functions in plant defense responses. Functional analysis showed that the elicitor BAR11 significantly stimulated plant systemic resistance in Arabidopsis thaliana to Pseudomonas syringae pv. tomato DC3000. In addition, systemic tissues accumulated reactive oxygen species and deposited callose in a short period post-treatment compared with the control. Quantitative RT-PCR results revealed that BAR11 can induce plant resistance through the salicylic acid and jasmonic acid signaling pathways. Further analysis indicated that BAR11 interacts with host catalases in plant cells. Taken together, we conclude that the elicitor BAR11 from the strain Hhs.015 can trigger defense responses in plants.
Project description:The mechanism of biocontrol agent Saccharothrix yanglingensis Hhs.015 action against Valsa mali, a major apple Valsa canker pathogen, was examined using a novel, sensitive (minimum detection limit 100 pg/μL) and reliably RT-qPCR technique. Prior to lesion formation, total concentration of V. mali in the bark showed a significant decrease (p<0.05) after 24 h of Hhs.015 treatment. This was more pronounced at 48 and 96 h post treatment. After lesion formation, levels of V. mali remained constant at the boundary between infected and uninfected bark tissues, although the relative expansion rate of the lesion was significantly reduced (p<0.05). Gene expression levels of endo-polygalacturonase, a marker for fungal pathogenicity, were sharply reduced while host induced resistance callose synthase levels increased significantly (p<0.05) at the boundary bark at 9 d after Hhs.015 treatment. The results showed that biocontrol agent Hhs.015 prevented infection of V. mali by inhibiting pathogen growth, down-regulating pathogenicity factor expression and inducing a high level of host resistance.
Project description:Identification of the mechanisms through which BET inhibitor (OTX-015) stimulates natural killer (NK) activation. RNA-seq was performed comparing vehicle- (DMSO) to OTX-015-treated NK-92 cell line.