ABSTRACT: ERa DNA Binding Profiles of IGF1 and ICI182,780 treated mouse uterus from manuscript: Role of ERα in Mediating Female Uterine Transcriptional Responses to IGF1
Project description:Estrogen (E2) signaling through its nuclear receptor, estrogen receptor α (ERα) increases insulin-like growth factor 1 (IGF1) in the rodent uterus, which then initiates further signals via the IGF1 receptor (IGF1R). Directly administering IGF1 results in similar biological and transcriptional uterine responses. Our studies using global ERα-null mice demonstrated a loss of uterine biological responses of the uterus to E2 or IGF1 treatment, while maintaining transcriptional responses to IGF1. To address this discrepancy in the need for uterine ERα in mediating the IGF1 transcriptional vs. growth responses, we assessed the IGF1 transcriptional responses in PgrCre+Esr1f/f (called ERαUtcKO) mice, which selectively lack ERα in progesterone receptor (PGR) expressing cells, including all uterine cells, while maintaining ERα expression in other tissues and cells that do not express Pgr. Additionally, we profiled IGF1-induced ERα binding sites in uterine chromatin using ChIP-seq. Herein, we explore the transcriptional and molecular signaling that underlies our findings to refine our understanding of uterine IGF1 signaling and identify ERα-mediated and ERα-independent uterine transcriptional responses. Defining these mechanisms in vivo in whole tissue and animal contexts provides details of nuclear receptor mediated mechanisms that impact biological systems and have potential applicability to reproductive processes of humans, livestock and wildlife.
Project description:Estrogen (E2) signaling through its nuclear receptor, estrogen receptor α (ERα) increases insulin-like growth factor 1 (IGF1) in the rodent uterus, which then initiates further signals via the IGF1 receptor (IGF1R). Directly administering IGF1 results in similar biological and transcriptional uterine responses. Our studies using global ERα-null mice demonstrated a loss of uterine biological responses of the uterus to E2 or IGF1 treatment, while maintaining transcriptional responses to IGF1. To address this discrepancy in the need for uterine ERα in mediating the IGF1 transcriptional vs. growth responses, we assessed the IGF1 transcriptional responses in PgrCre+Esr1f/f (called ERαUtcKO) mice, which selectively lack ERα in progesterone receptor (PGR) expressing cells, including all uterine cells, while maintaining ERα expression in other tissues and cells that do not express Pgr. Additionally, we profiled IGF1-induced ERα binding sites in uterine chromatin using ChIP-seq. Herein, we explore the transcriptional and molecular signaling that underlies our findings to refine our understanding of uterine IGF1 signaling and identify ERα-mediated and ERα-independent uterine transcriptional responses. Defining these mechanisms in vivo in whole tissue and animal contexts provides details of nuclear receptor mediated mechanisms that impact biological systems and have potential applicability to reproductive processes of humans, livestock and wildlife.
Project description:Insulin-like growth factor 1 (IGF1) is primarily synthesized in and secreted from the liver; however, estrogen (E2), through E2 receptor α (ERα), increases uterine Igf1 mRNA levels. Previous ChIP-Seq analyses of the murine uterus have revealed a potential enhancer region distal from the Igf1 transcription start site (TSS) with multiple E2-dependent ERα-binding regions. Here, we show E2-dependent super enhancer–associated characteristics and suggest contact between the distal enhancer and the Igf1 TSS. We hypothesized that this distal super-enhancer region controls E2-responsive induction of uterine Igf1 transcripts. We deleted 430 bp, encompassing one of the ERα-binding sites, thereby disrupting interactions of the enhancer with gene-regulatory factors. As a result, E2-mediated induction of mouse uterine Igf1 mRNA is completely eliminated, whereas hepatic Igf1 expression remains unaffected. This highlights the central role of a distal enhancer in the assembly of the factors necessary for E2-dependent interaction with the Igf1 TSS and induction of uterus-specific Igf1 transcription. Of note, loss of the enhancer did not affect fertility or uterine growth responses. Deletion of uterine Igf1 in a PgrCre;Igf1f/f model decreased female fertility, but did not impact the E2-induced uterine growth response. Moreover, E2-dependent activation of uterine IGF1 signaling was not impaired by disrupting the distal enhancer or by deleting the coding transcript. This indicated a role for systemic IGF1, suggested that other growth mediators drive uterine response to E2, and that uterine-derived IGF1 is essential for reproductive success. Our findings elucidate the role of a super enhancer in Igf1 regulation and uterine growth.
Project description:Estrogens stimulate hypertrophy and hyperplasia in the uterus and exert their activity through estrogen receptor α (ERα). A uterine epithelial ERα conditional knockout mouse model (Wnt7aCre+;Esr1f/f or cKO) demonstrated that ERα in the epithelial cells was dispensable for an early uterine proliferative response to 17β-estradiol (E2), but required for subsequent uterine biological responses. We compared the gene expression profile in the uterus after E2 treatment in the cKO samples with WT samples. We found that approximately 25% of the genes differentially expressed at 2 h were epithelial ERα independent, as they were preserved in the cKO, indicating they are mediated from the stroma and sufficient to promote initial proliferative responses. However, more than 90% of the differentially expressed transcripts at 24 h were absent in the cKO, indicating the majority of later transcriptional regulation required epithelial ERα and suggesting the loss of regulation of these later transcripts results in the blunted growth response 3 days after treatment. These transcription profiles correlate with our previous biological responses, in which the initial proliferative response is independent of epithelial ERα but dependent on stromal ERα, yet epithelial ERα is essential for subsequent tissue responsiveness. These analyses are now allowing for in vivo determination of the cell specific actions of ERα in the female reproductive tract.
Project description:To evaluate the ability of a DNA binding deficient ERa to mediate transcriptional responses in the mouse uterus, ovariectomized mice were injected with 100 ul of saline or 250 ng of estradiol (E2) in 100 ul saline, uterine tissue was collected 2 hours filllowing the injection, and RNA was isolated
Project description:At birth, all female mice, including those that either lack estrogen receptor α (ERα-knockout) or that express mutated forms of ERα (AF2ERKI), have a hypoplastic uterus. However, uterine growth and development that normally accompanies pubertal maturation does not occur in ERα-knockout or AF2ERKI mice, indicating ERα mediated estrogen signaling is essential for this process. Mice that lack Cyp19 (aromatase, ArKO mice), an enzyme critical for estrogen (E2) synthesis, are unable to make E2, and lack pubertal uterine development. A single injection of E2 into ovariectomized adult (10 weeks old) females normally results in uterine epithelial cell proliferation, however, we observe that, although ERα is present in the ArKO uterine cells, no proliferative response is seen. We assessed the impact of exposing ArKO mice to E2 during pubertal and post-pubertal windows and observed that E2 exposed ArKO mice acquired growth responsiveness. Analysis of differential gene expression between unexposed ArKO samples and samples from animals exhibiting the ability to mount an E2-induced uterine growth response (WT or E2 exposed ArKO) revealed activation of EZH2 and HAND2 signaling and inhibition of GLI1 responses. EZH2 and HAND2 are known inhibit uterine growth, and GLI1 is involved in IHH signaling, which is a positive mediator of uterine response. Finally, we show that exposure of ArKO females to dietary phytoestrogens results in their acquisition of uterine growth competence. Altogether our findings suggest that pubertal levels of endogenous and exogenous estrogens impact biological function of uterine cells later in life via ERα-dependent mechanisms. We compared uterine RNA from ovariectomized adult aromatase knockout mice (ARKO) mice that were untreated to WT mice and to ARKO that were administered estradiol benzoate (EB) to induce uterine epithelial cell growth competence
Project description:To advance understanding of mechanisms leading to biological and transcriptional endpoints related to estrogen action in the mouse uterus, we have mapped ERα and RNA polymerase II binding sites using chromatin immunoprecipitation (ChIP) followed by sequencing of enriched chromatin fragments (ChIP-seq). In the absence of hormone, 5184 ERα binding sites were apparent in the vehicle treated ovariectomized uterine chromatin, while 17240 were seen one hour after estrogen (E2) treatment, indicating that some sites are occupied by unliganded ERα, and that ERα binding is increased by E2. Approximately 15% of the uterine ERα binding sites were adjacent to (<10 KB) annotated transcription start sites and many sites are found within genes or are found more than 100 KB distal from mapped genes; however, the density (sites per bp) of ERα binding sites is significantly greater adjacent to promoters. An increase in quantity of sites but no significant positional differences were seen between vehicle and E2 treated samples in the overall locations of ERα binding sites either distal from, adjacent to or within genes. Analysis of the PolII data revealed the presence of poised promoter proximal PolII on some highly upregulated genes. Additionally, co-recruitment of PolII and ERα to some distal enhancer regions was observed. A de novo motif analysis of sequences in the ERα bound chromatin confirmed that estrogen response elements (EREs) were significantly enriched. Interestingly, in areas of ERα binding without predicted ERE motifs, homeodomain transcription factor (Hox) binding motifs were significantly enriched. The integration of the ERα and PolII binding sites from our uterine ChIP-seq data with transcriptional responses revealed in our uterine microarrays has the potential to greatly enhance our understanding of mechanisms governing estrogen response in uterine and other estrogen target tissues.
Project description:The uterus, a female reproductive organ regulated by the sex hormones estrogen and progesterone, undergoes periodic cyclical changes. The estrous cycle refers to the reproductive cycle in non-primate mammalian females. During the mouse estrous cycle, the uterus undergoes various physiological changes as a result of dynamic hormonal changes. Accurate regulation of these changes is crucial for the establishment of a successful pregnancy. Notably, estrogen plays an important role in the regulation of the proestrus and estrus stages of the estrous cycle. Family with sequence similarity 3 (Fam3) is a cytokine-like gene family with four members: Fam3a, Fam3b, Fam3c, and Fam3d. Expression and regulation of the Fam3 family members in mouse uterine physiology remain largely unknown. Therefore, this study aimed to investigate the expression of Fam family members in the uterus during the estrous cycle and evaluate its regulation by estrogen using a mouse model. Analysis of mouse uterine RNA sequencing data revealed upregulated expression of Fam3b, Fam3c, and Fam3d during the proestrus and estrus stages. Fam3d expression was dynamically regulated during the estrous cycle, with high expression levels during the proestrus and estrus stages. To investigate whether Fam3d expression is regulated by estrogen, we administered estradiol (E2) to ovariectomized mice at different time points. Fam3d expression was highest 24 h after E2 injection, suggesting that estrogen plays a crucial role in regulating Fam3d expression. Furthermore, inhibition experiments using the estrogen receptor alpha (ERα) antagonist ICI revealed that estrogen regulates Fam3d expression through the ERα-mediated pathway. Immunofluorescence staining demonstrated that FAM3D was exclusively expressed in the luminal and glandular epithelia but not in the stroma. Additionally, FAM3D was predominantly localized in the cytoplasm, particularly in the apical region, and not in the nucleus. These findings provide valuable insights into the potential role of Fam3d in the uterus and lay the groundwork for future research on its function and significance in uterine physiology.
Project description:Chemotherapy can potentially impair fertility in premenopausal cancer patients. Female fertility preservation has been mainly focused on the ovarian aspects and benefited greatly from assisted reproductive technologies, such as in vitro fertilization (IVF). The rate-limiting step for the success of IVF is embryo implantation in the uterus. Doxorubicin (DOX) is a widely used chemotherapeutic agent with ovarian toxicity. It remains unknown if the uterus is a direct target of DOX. To circumvent the indirect uterine effect from ovarian toxicity of DOX and to investigate potential long-term impact of DOX on the uterus, young adult ovariectomized CD-1 mice were given an intraperitoneal injection once with PBS or DOX (10 mg/kg, a human relevant chemotherapeutic dose), and 30 days later, each set of mice was randomly assigned into three groups and subcutaneously injected with oil, 17β-estradiol (E2, for 6 hours), and progesterone (P4, for 54 hours), respectively. Uterine transcriptomic profiles were determined using RNA-seq. Principal component analysis of the uterine transcriptomes revealed four clusters from the six treatment groups: PBS-oil & DOX-oil, PBS-P4 & DOX-P4, PBS-E2, and DOX-E2, indicating that DOX treatment did not affect the overall uterine transcriptomic profiles in the oil and P4-treated mice but altered uterine responses to E2 treatment. These data demonstrate that DOX can directly target the uterus and has a long-term impact on uterine responses to E2.