Project description:Aeromonas salmonicida is a fish pathogen that causes furunculosis. Virulent strains of this bacterium are able to infect salmonid macrophages and survive within them, although mechanisms favouring intracellular survival are not completely understood. It is known that A. salmonicida cultured in vivo in the peritoneal cavity of the host undergoes changes in gene expression and surface architecture compared with cultures grown in vitro in broth. Therefore, in this study, the macrophage responses to A. salmonicida grown in vivo and in vitro were compared. Enriched macrophages isolated from head kidney of Atlantic salmon (Salmo salar) were infected in vitro in 96-well microtitre dishes and changes in gene expression during the infection process were monitored using a custom Atlantic salmon cDNA microarray. A. salmonicida cultures grown in tryptic soy broth and in peritoneal implants were used to infect the macrophages. The macrophages were harvested at 0.5, 1.0 and 2.0 h after addition of the bacteria to the medium. Significant changes in gene expression were evident by microarray analysis at 2.0 h post-infection in macrophages infected with broth-grown and implant-grown bacteria; however, qPCR analysis revealed earlier up-regulation of JunB and TNF-alpha in macrophages exposed to the implant-grown bacteria. Up-regulation of those genes and others is consistent with the effects of extracellular products of aeromonad bacteria on macrophages and also suggests initiation of the innate immune response. Keywords: time course
Project description:Lepeophtheirus salmonis (sea lice) and bacterial co-infection threatens wild and farmed Atlantic salmon performance and welfare. The present microarray-based study examined the dorsal skin transcriptome response to formalin-killed Aeromonas salmonicida bacterin (ASAL) in pre-adult sea lice-infected and non-infected Atlantic salmon to fill the existing knowledge gap and aid in developing anti-co-infection strategies. To this aim, sea lice-infected and non-infected salmon were intraperitoneally injected with either phosphate-buffered saline (PBS) or ASAL (i.e., 4 injection/infection groups: PBS/no lice, PBS/lice, ASAL/no lice, and ASAL/lice). The analysis of the dorsal skin transcriptome data [Significance Analysis of Microarrays (5% FDR)] identified 345 up-regulated and 2,189 down-regulated DEPs in the comparison PBS/lice vs. PBS/no lice, and 82 up-regulated and 3 down-regulated DEPs in the comparison ASAL/lice vs. ASAL/no lice. The comparison ASAL/lice vs. PBS/lice identified 272 up-regulated and 11 down-regulated DEPs, whereas ASAL/no lice vs. PBS/no lice revealed 27 up-regulated DEPs. The skin transcriptome differences between the co-stimulated salmon (i.e., ASAL/lice) and PBS/no lice salmon accounted for 1,878 up-regulated and 3,120 down-regulated DEPs.
Project description:Aeromonas salmonicida is a fish pathogen that causes furunculosis. Virulent strains of this bacterium are able to infect salmonid macrophages and survive within them, although mechanisms favouring intracellular survival are not completely understood. It is known that A. salmonicida cultured in vivo in the peritoneal cavity of the host undergoes changes in gene expression and surface architecture compared with cultures grown in vitro in broth. Therefore, in this study, the macrophage responses to A. salmonicida grown in vivo and in vitro were compared. Enriched macrophages isolated from head kidney of Atlantic salmon (Salmo salar) were infected in vitro in 96-well microtitre dishes and changes in gene expression during the infection process were monitored using a custom Atlantic salmon cDNA microarray. A. salmonicida cultures grown in tryptic soy broth and in peritoneal implants were used to infect the macrophages. The macrophages were harvested at 0.5, 1.0 and 2.0 h after addition of the bacteria to the medium. Significant changes in gene expression were evident by microarray analysis at 2.0 h post-infection in macrophages infected with broth-grown and implant-grown bacteria; however, qPCR analysis revealed earlier up-regulation of JunB and TNF-alpha in macrophages exposed to the implant-grown bacteria. Up-regulation of those genes and others is consistent with the effects of extracellular products of aeromonad bacteria on macrophages and also suggests initiation of the innate immune response. Keywords: time course Enriched macrophages from 24 responder fish that showed positive respiratory burst in response to phorbol myristate acetate were plated in individual wells of 96-well flat-bottom polystyrene tissue culture plates. A. salmonicida were added to the macrophages, and incubated for 0.5, 1.0 or 2.0 h. Control wells received 10 ul of HBSS. Three replicate infections were performed for each type of bacteria. Hybridizations were carried out in duplicate, reversing the fluors for each sample on the second chip.
Project description:This study explored how the omega-6 to omega-3 fatty acid ratio in low-fish oil aquafeeds influences Atlantic salmon's antiviral and antibacterial immune responses. Atlantic salmon were fed aquafeeds rich in soy oil (high in omega-6) or linseed oil (high in omega-3) for 12 weeks and then challenged with bacterial (formalin-killed Aeromonas salmonicida; Asal) or viral-like (polyriboinosinic polyribocytidylic acid; pIC) antigens. The mRNA levels of 46 immune-relevant genes in the head kidneys of the salmon were analyzed via quantitative real-time polymerase chain reaction (RT-qPCR).
Project description:This study was performed to validate the newly developed CGP Atlantic cod 20K oligonucleotide microarray. Atlantic cod (Gadus morhua) received an intraperitoneal injection of either formalin-killed, atypical Aeromonas salmonicida (Asal) or PBS and transcriptional profiles of spleen tissues from Asal-injected fish were compared to those from pre-injection control fish and PBS-injected control fish. Gene expression profiles resulting from this study were compared to those from suppression subtractive hybridization library studies, that were previously performed on the same samples, and to literature. Gene expression patterns of single genes were confirmed by QPCR analysis. This study has shown that the newly developed CGP Atlantic cod 20K oligo microarray platform is a valuable tool for cod genomic research.
Project description:Background Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Despite the identification of several virulence factors the pathogenesis is still poorly understood. We have used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF5054) and T3SS-deficient (isogenic DeltaascV, extremely low-virulent, JF2747) strains in exponential (GP) and stationary (SP) phases of growth. Results Among the different experimental conditions we obtained semi-quantitative values for a total of 2136 A. salmonicida proteins. Proteins of specific A. salmonicida species were proportionally less detected than proteins common to the Aeromonas genus or those shared with other Aeromonas species, suggesting that in vitro growth did not induce the expression of these genes. Four detected proteins which are unidentified in the genome of reference strains of A. salmonicida were homologous to components of the conjugative T4SS of A. hydrophila pRA1 plasmid. Polypeptides of three proteins which are specific to the 01-B526 strain were also discovered. In supernatants (SNs), the number of detected proteins was higher in SP (326 for wt vs 329 for mutant) than in GP (275 for wt vs 263 for mutant). In pellets, the number of identified proteins (a total of 1536) was approximately the same between GP and SP. Numerous highly conserved cytoplasmic proteins were present in A. salmonicida SNs (mainly EF-Tu, EF-G, EF-P, EF-Ts, TypA, AlaS, ribosomal proteins, HtpG, DnaK, peptidyl-prolyl cis-trans isomerases, GAPDH, Enolase, FbaA, TpiA, Pgk, TktA, AckA, AcnB, Mdh, AhpC, Tpx, SodB and PNPase), and several evidences support the theory that their extracellular localization was not the result of cell lysis. According to the Cluster of Orthologous Groups classification, 29% of excreted proteins in A. salmonicida SNs were currently poorly characterized. Conclusions In this part of our work we elucidated the whole in vitro exoproteome of hypervirulent A. salmonicida subsp. salmonicida and showed the secretion of several highly conserved cytoplasmic proteins with putative moonlighting functions and roles in virulence. All together, our results offer new information about the pathogenesis of furunculosis and point out potential candidates for vaccine development.
Project description:The liver is a multitasking organ with essential functions for vertebrate health spanning metabolism and immunity. To explore the multifaceted role played by liver cells in response to bacterial infection in fishes, we generated a transcriptomic atlas of nuclei isolated from the liver of Atlantic salmon (Salmo salar L.), contrasting control fish with those challenged with a pathogenic strain of Aeromonas salmonici. We found a dominant hepatocyte population that radically remodels its transcriptome following infection to activate the acute phase response and other defense functions, while repressing routine functions such as metabolism. In addition, we discover numerous cell specific responses to infection within the immune cell compartments, and identify many novel cell-specific marker genes to empower future studies of this organ in fishes.
Project description:Following an infection with a specific pathogen, the acquired immune system of many teleostean fish, including salmonids, is known to retain a specific memory of the infectious agent, which protects the host against subsequent infections. For example Atlantic salmon (Salmo salar), which have survived an infection with a low-virulence infectious salmon anemia virus (ISAV) isolate are less susceptible against subsequent infections with high-virulence ISAV isolates. A greater understanding of the mechanisms and immunological components involved in this acquired protection against ISAV is fundamental for the development of efficacious vaccines and treatments against this pathogen. To better understand the immunity components involved in this observed resistance, we have used an Atlantic salmon DNA microarray and RT-qPCR assays to study the global gene expression responses of preexposed Atlantic salmon (fish having survived an infection with a low-virulence ISAV isolate) during the course of a secondary infection with a high-virulence ISAV isolate