ABSTRACT: De novo sequencing and characterization of inflorescence transcriptome of the rice bean (Vigna umbellata) for gene discovery and SSR marker development
Project description:Aging and age-related neurodegeneration are among the major challenges because of the progressive increase in the number of elder people in the wold population. Nutrition, which has important long-term consequences for health, is actually considered a means to prevent diseases and to reach a healthy aging. Here we investigate the role of Vigna unguiculata beans on senescence by using Saccharomyces cerevisiae and Drosophila melanogaster as model systems. Aqueous extract, mainly containing starch, proteins and amino acids, extends chronological lifespan in yeast cells, showing a remarkable synergistic effect in combination with caloric restriction. The extension of yeast longevity requires both the anti-aging Snf1/AMPK and the pro-aging Ras2/PKA pathways. A significant marked increase of lifespan was observed also in fruit flies supplemented with the V. unguiculata extract, which is accompanied by the increased expression of FOXO, NOTCH, SIRT1 and heme oxygenase (HO) genes, already known to be required for the extension of fruit fly longevity. α-synuclein forms toxic intracellular protein inclusions in Parkinson’s disease (PD) and actually preventing α-synuclein self-assembly has become one of the most promising approaches for the treatment of this neurodegenerative disorder. Here, we report that in vitro aggregation of -synuclein, as well as its toxicity in yeast and in neuroblastoma cells, are strongly decreased in the presence of bean extract. In addition, in a Caenorhabditis elegans model of PD that expresses α-synuclein, Vigna unguiculate extract substantially reduces the number of the age-dependent degeneration of the cephalic dopaminergic neurons. Overall, our data support the role of Vigna unguiculata beans as a functional food, worth to be further explored in order to develop lead molecules for therapeutic intervention in age-related disorders.
Project description:BACKGROUND AND AIMS: The Asian genus Vigna, to which four cultivated species (rice bean, azuki bean, mung bean and black gram) belong, is suitable for comparative genomics. The aims were to construct a genetic linkage map of rice bean, to identify the genomic regions associated with domestication in rice bean, and to compare these regions with those in azuki bean. METHODS: A genetic linkage map was constructed by using simple sequence repeat and amplified fragment length polymorphism markers in the BC(1)F(1) population derived from a cross between cultivated and wild rice bean. Using this map, 31 domestication-related traits were dissected into quantitative trait loci (QTLs). The genetic linkage map and QTLs of rice bean were compared with those of azuki bean. KEY RESULTS: A total of 326 markers converged into 11 linkage groups (LGs), corresponding to the haploid number of rice bean chromosomes. The domestication-related traits in rice bean associated with a few major QTLs distributed as clusters on LGs 2, 4 and 7. A high level of co-linearity in marker order between the rice bean and azuki bean linkage maps was observed. Major QTLs in rice bean were found on LG4, whereas major QTLs in azuki bean were found on LG9. CONCLUSIONS: This is the first report of a genetic linkage map and QTLs for domestication-related traits in rice bean. The inheritance of domestication-related traits was so simple that a few major QTLs explained the phenotypic variation between cultivated and wild rice bean. The high level of genomic synteny between rice bean and azuki bean facilitates QTL comparison between species. These results provide a genetic foundation for improvement of rice bean; interchange of major QTLs between rice bean and azuki bean might be useful for broadening the genetic variation of both species.