Project description:Foodborne pathogens cause acute and chronic health outcomes of very different durations, severity and mortality, resulting in high costs and burdens to society. The issues of food safety and food poisoning are being increasingly emphasised, particularly in developed countries. Infection/contamination with many agents i.e., bacterial, parasitic and viral entities can result in foodborne illness. This article will focus mainly on viral agents of infection.A range of different viruses can cause food poisoning/foodborne infection, and infection can result in a myriad of symptoms, ranging from mild, acute disease to chronic, debilitating disease and even death. Due to the inherent differences between bacteria and viruses, namely the fact that viruses do not replicate in food, while bacteria do, viruses are frequently difficult to detect. This is compounded by the fact that many of the viruses associated with enteric disease do not replicate in cell culture. These factors can lead to a lag between reporting, detection and analysis of foodborne viruses versus bacterial agents. Despite these constraints, it is now evident that there are both well-established and emerging viruses implicated in foodborne infections, and the role of molecular detection and characterisation is becoming increasingly important.
Project description:An oligonucleotide array (microarray) incorporating 13,000 elements representing selected strains of hepatitis A virus (HAV), human coxsackieviruses A and B (CVA and CVB), genogroups I and II of Norovirus (NV), and human rotavirus (RV) gene segments 3,4,10, and 11 was designed based on the principle of tiling. Each oligonucleotide was 29 bases long, starting at every 5th base of every sequence, resulting in an overlap of 24 bases in two consecutive oligonucleotides. The applicability of the array for virus identification was examined using PCR amplified products from multiple HAV and CV strains. PCR products labeled with biotin were hybridized to the array, and the biotin was detected using a brief reaction with Cy3-labeled streptavidin, the array subjected to laser scanning, and the hybridization data plotted as fluorescence intensity against each oligonucleotide in the array. The combined signal intensities of all probes representing a particular strain of virus were calculated and plotted against all virus strains identified on a linear representation of the array. The profile of the total signal intensity identified the strain that is most likely represented in the amplified cDNA target. The results obtained with HAV and CV indicated that the hybridization profile thus generated can be used to identify closely related viral strains. This represents a significant improvement over current methods for virus identification using PCR amplification and amplicon sequencing.
Project description:Emerging infectious diseases are often the products of host shifts, where a pathogen jumps from its original host to a novel species. Viruses in particular cross species barriers frequently. Acute bee paralysis virus (ABPV) and deformed wing virus (DWV) are viruses described in honey bees (Apis mellifera) with broad host ranges. Ants scavenging on dead honey bees may get infected with these viruses via foodborne transmission. However, the role of black garden ants, Lasius niger and Lasius platythorax, as alternative hosts of ABPV and DWV is not known and potential impacts of these viruses have not been addressed yet. In a laboratory feeding experiment, we show that L. niger can carry DWV and ABPV. However, negative-sense strand RNA, a token of virus replication, was only detected for ABPV. Therefore, additional L. niger colonies were tested for clinical symptoms of ABPV infections. Symptoms were detected at colony (fewer emerging workers) and individual level (impaired locomotion and movement speed). In a field survey, all L. platythorax samples carried ABPV, DWV-A and -B, as well as the negative-sense strand RNA of ABPV. These results show that L. niger and L. platythorax are alternative hosts of ABPV, possibly acting as a biological vector of ABPV and as a mechanical one for DWV. This is the first study showing the impact of honey bee viruses on ants. The common virus infections of ants in the field support possible negative consequences for ecosystem functioning due to host shifts.
Project description:Millions of people suffer from foodborne diseases throughout the world every year, and the importance of food safety has grown worldwide in recent years. The aim of this study was to investigate the survival of hepatitis A virus (HAV) and viral surrogates of human norovirus (HuNoV) (bacteriophage MS2 and murine norovirus [MNV]) in food over time. HAV, MNV, and MS2 were inoculated onto either the digestive gland of oysters or the surface of fresh peppers, and their survival on these food matrices was measured under various temperature (4°C, 15°C, 25°C, and 40°C) and relative humidity (RH) (50% and 70%) conditions. Inoculated viruses were recovered from food samples and quantified by a plaque assay at predetermined time points over 2 weeks (0, 1, 3, 7, 10, and 14 days). Virus survival was influenced primarily by temperature. On peppers at 40°C and at 50% RH, >4- and 6-log reductions of MNV and HAV, respectively, occurred within 1 day. All three viruses survived better on oysters. In addition, HAV survived better at 70% RH than at 50% RH. The survival data for HAV, MS2, and MNV were fit to three different mathematical models (linear, Weibull, and biphasic models). Among them, the biphasic model was optimum in terms of goodness of fit. The results of this study suggest that major foodborne viruses such as HAV and HuNoV can survive over prolonged periods of time with a limited reduction in numbers. Because a persistence of foodborne virus on contaminated foods was observed, precautionary preventive measures should be performed.
Project description:Enteric viruses, such as human norovirus (NoV) and hepatitis A virus (HAV), are the major causes of foodborne illnesses worldwide. These viruses have low infectious dose, and may remain infectious for weeks in the environment and food. Limited information is available regarding viral survival and transmission in low-moisture foods (LMF). LMFs are generally considered as ready-to-eat products, which undergo no or minimal pathogen reduction steps. However, numerous foodborne viral outbreaks associated with LMFs have been reported in recent years. The objective of this study was to examine the survival of foodborne viruses in LMFs during 4-week storage at ambient temperature and to evaluate the efficacy of advanced oxidative process (AOP) treatment in the inactivation of these viruses. For this purpose, select LMFs such as pistachios, chocolate, and cereal were inoculated with HAV and the norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV), then viral survival on these food matrices was measured over a four-week incubation at ambient temperature, by both plaque assay and droplet-digital RT-PCR (ddRT-PCR) using the modified ISO-15216 method as well as the magnetic bead assay for viral recovery. We observed an approximately 0.5 log reduction in viral genome copies, and 1 log reduction in viral infectivity for all three tested viruses following storage of select inoculated LMFs for 4 weeks. Therefore, the present study shows that the examined foodborne viruses can persist for a long time in LMFs. Next, we examined the inactivation efficacy of AOP treatment, which combines UV-C, ozone, and hydrogen peroxide vapor, and observed that while approximately 100% (4 log) inactivation can be achieved for FCV, and MNV in chocolate, the inactivation efficiency diminishes to approximately 90% (1 log) in pistachios and 70% (< 1 log) in cereal. AOP treatment could therefore be a good candidate for risk reduction of foodborne viruses from certain LMFs depending on the food matrix and surface of treatment.
Project description:Full title: Probing the pan genome of a foodborne bacterial pathogen Listeria monocytogenes: Implications for its niche adaptation, pathogenesis, and evolution Listeria monocytogenes is a foodborne bacterial pathogen well known for adaptability to diverse environmental and host niches, and a high fatality rate among infected, immuno-compromised individuals. Three genetic lineages have been identified within this species. Strains of genetic lineages I and II account for more than ninety percent of foodborne disease outbreaks worldwide, whereas strains from genetic lineage III are rarely implicated in human infectious for unknown, yet intriguing, reasons. Here we have probed the genomic diversity of 26 L. monocytogenes strains using both whole-genome sequences and a novel 385,000 probe pan-genome microarray, fully tiling the genomes of 20 representative strains. Using these methods to identify genes highly conserved in lineages I and II but rare in lineage III, we have identified 86 genes and 8 small RNAs that play roles in bacterial stress resistance, pathogenicity, and niche, potentially explaining the predominance of L. monocytogenes lineages I and II in foodborne disease outbreaks. Extending gene content analysis to all lineages revealed a L. monocytogenes core genome of approximately 2,350 genes (80% of each individual genome) and a pan-genomic reservoir of >4,000 unique genes. Combined gene content data from both sequences and arrays was used to reconstruct an informative phylogeny for the L. monocytogenes species that confirms three distinct lineages and describes the relationship of 9 new lineage III genomes. Comparative analysis of 18 fully sequenced L. monocytogenes lineage I and II genomes shows a high level of genomic conservation and synteny, indicative of a closed pan-genome, with moderate domain shuffling and sequence drift associated with bacteriophages is present in all lineages. In contrast with lineages I and II, notable genomic diversity and characteristics of an open pan-genome were observed in the lineage III genomes, including many strain-specific genes and a more complex conservation pattern. This indicates that the L. monocytogenes pan-genome has not yet been fully sampled by genome sequencing, and additional sequencing of lineage III genomes is necessary to survey the full diversity of this intriguing species and reveal its mechanisms for adaptability and virulence.
Project description:The Caribbean is a net importer of food, and with billions of dollars' worth of food products being imported each year, territorial governments are now seeking to encourage local production of foods in an attempt to stem the loss of foreign exchange from these economies with little resilience. The Caribbean, however, lacks the comprehensive food safety system that should be a corollary to successful food production. Regional authorities underestimate the burden of foodborne diseases especially on its workforce and major economic base, the tourism industry. Anecdotally after every mass event in the region, many officially unreported cases of gastroenteritis are recognized. This short communication makes the argument of the importance of food borne illnesses specific to the Caribbean, and improvements that could be made to surveillance to reduce negative outcomes associated with the food supply chain.
Project description:Traditional surveillance systems capture only a fraction of the estimated 48 million yearly cases of foodborne illness in the United States. We assessed whether foodservice reviews on Yelp.com (a business review site) can be used to support foodborne illness surveillance efforts.We obtained reviews from 2005 to 2012 of 5824 foodservice businesses closest to 29 colleges. After extracting recent reviews describing episodes of foodborne illness, we compared implicated foods to foods in outbreak reports from the U.S. Centers for Disease Control and Prevention (CDC).Broadly, the distribution of implicated foods across five categories was as follows: aquatic (16% Yelp, 12% CDC), dairy-eggs (23% Yelp, 23% CDC), fruits-nuts (7% Yelp, 7% CDC), meat-poultry (32% Yelp, 33% CDC), and vegetables (22% Yelp, 25% CDC). The distribution of foods across 19 more specific food categories was also similar, with Spearman correlations ranging from 0.60 to 0.85 for 2006-2011. The most implicated food categories in both Yelp and CDC were beef, dairy, grains-beans, poultry and vine-stalk.Based on observations in this study and the increased usage of social media, we posit that online illness reports could complement traditional surveillance systems by providing near real-time information on foodborne illnesses, implicated foods and locations.
Project description:Foodborne Hepatitis A Virus (HAV) outbreaks are being recognized as an emerging public health problem in industrialized countries. In 2013 three foodborne HAV outbreaks occurred in Europe and one in USA. During the largest of the three European outbreaks, most cases occurred in Italy (>1,200 cases as of March 31, 2014). A national Task Force was established at the beginning of the outbreak by the Ministry of Health. Mixed frozen berries were early demonstrated to be the source of infection by the identity of viral sequences in patients and in food. In the present study the molecular characterization of HAV isolates from 355 Italian cases is reported.Molecular characterization was carried out by PCR/sequencing (VP1/2A region), comparison with reference strains and phylogenetic analysis.A unique strain was responsible for most characterized cases (235/355, 66.1%). Molecular data had a key role in tracing this outbreak, allowing 110 out of the 235 outbreak cases (46.8%) to be recognized in absence of any other link. The data also showed background circulation of further unrelated strains, both autochthonous and travel related, whose sequence comparison highlighted minor outbreaks and small clusters, most of them unrecognized on the basis of epidemiological data. Phylogenetic analysis showed most isolates from travel related cases clustering with reference strains originating from the same geographical area of travel.In conclusion, the study documents, in a real outbreak context, the crucial role of molecular analysis in investigating an old but re-emerging pathogen. Improving the molecular knowledge of HAV strains, both autochthonous and circulating in countries from which potentially contaminated foods are imported, will become increasingly important to control outbreaks by supporting trace back activities, aiming to identify the geographical source(s) of contaminated food, as well as public health interventions.