Project description:The phage protein gp70.1 encoded by Pseudomonas aerugonosa phage PaP3 was toxic to both P. aerugonosa and E. coli, microarry analysis was used to investigate the effects of gp70.1 on P. aerugonosa with three periods of bacterial growth.
Project description:Pseudomonas syringae pv. phaseolicola (Pph) is a significant bacterial pathogen of agricultural crops, and phage Φ6 and other members of the dsRNA virus family Cystoviridae undergo lytic (virulent) infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage Φ6 as a model system in evolutionary biology, Pph resistance to phage Φ6 remains poorly characterized. To investigate differences between phage Φ6 resistant Pseudomonas syringae pathovar phaseolicola strains, we performed expression analysis of super and non piliated strains of Pseudomonas syringae to determine the genetic cause of resistance to viral infection.
Project description:The global transcriptional profile of novel T7-like Pseudomonas aeruginosa phage LUZ100 was obtained using the long read RNA sequencing technique ONT-cappable-seq. Using this approach we obtained a comprehensive genome-wide map of viral transcription start sites, terminators and transcription units and gained new insights in the molecular mechanisms of transcriptional regulation of T7-like temperate phages.
Project description:Differential RNA-seq (dRNA-seq) was performed on Pseudomonas aeruginosa alone or shortly after iinfection with the jumbo phage phiKZ
Project description:The global transcriptional profile of Pseudomonas chlororaphis infecting phage 201f2-1 was obtained using the long-read RNA sequencing technique ONT-cappable-seq. this resulted in a comprehensive genome-wide map of viral transcription start and termination sites. In addition, we were able to identify different transcription units and gained new insights in the molecular mechanisms of of transcriptional regulation of members of the Phikzvirus.