Project description:BackgroundToona is a critical genus in the Meliaceae, and the plants of this group are an asset for both restorative and restorative purposes, the most flexible of which are Toona sinensis and Toona ciliata. To concentrate on the advancement of mitochondrial(Mt) genome variety in T.sinensis and T.ciliata, the Mt genomes of the two species were sequenced in high throughput independently, after de novo assembly and annotation to construct a Mt genome map for comparison in genome structure. Find their repetitive sequences and analyze them in comparison with the chloroplast genome, along with Maximum-likelihood(ML) phylogenetic analysis with 16 other relatives.Results(1) T. sinensis and T.ciliata are both circular structures with lengths of 683482 bp and 68300 bp, respectively. They share a high degree of similarity in encoding genes and have AT preferences. All of them have the largest Phe concentration and are the most frequently used codons. (2) Both of their Mt genome are highly preserved in terms of structural and functional genes, while the main variability is reflected in the length of tRNA, the number of genes, and the value of RSCU. (3) T. siniensis and T. ciliata were detected to have 94 and 87 SSRs, respectively, of which mononucleotides accounted for the absolute proportion. Besides, the vast majority of their SSRs were found to be poly-A or poly-T. (4)10 and 11 migrating fragments were identified in the comparison with the chloroplast genome, respectively. (5) In the ML evolutionary tree, T.sinensis and T.ciliata clustered individually into a small branch with 100% support, reflecting two species of Toona are very similarly related to each other.ConclusionsThis research provides a basis for the exploitation of T.sinensis and T.ciliata in terms of medicinal, edible, and timber resources to avoid confusion; at the same time, it can explore the evolutionary relationship between the Toona and related species, which does not only have an important practical value, but also provides a theoretical basis for future hybrid breeding of forest trees, molecular markers, and evolutionary aspects of plants, which has great scientific significance.
Project description:Toona ciliata Roem is an important timber species in the Toona genus of the Meliaceae family and an endangered species due to over-cutting and a low rate of natural regeneration in China. Although molecular markers have been applied to studying population genetic diversity, the absence of a reliable reference genome limits in-depth genetic conservation and evolutionary studies of this species. Here, we reported a high-quality assembly of the whole genome sequence of T. ciliata. The total assembled genome has 520.64 Mb in length anchored on 28 chromosomes (contig N50 = 4.48 Mb). A total of 42,159 genes were predicted after the ab initio, homology-based, and transcriptome analyses. A total of 41,284 protein-encoding genes (97.92%) were functionally annotated and 1,246 non-coding RNAs were identified in the T. ciliata genome. Phylogenomic analysis showed that T. ciliata was divergent at 15.06 (6-25) Ma from T. sinensis of the same genus Toona. This whole genome sequence provides a valuable resource to study the genetic conservation and molecular evolution of T. ciliata in the future.