Project description:To investigate genes possibly regulated by TTF-1 in small cell lung cancer cell lines, we compared gene expression profiles of NCI-H209 and Lu139 cell lines electroporated with control and TTF-1 siRNAs.
Project description:To determine miRNAs regulated by TTF-1 in SCLC cell lines, miRNA array analyses were carried out in NCI-H209 cells following TTF-1 knockdown
Project description:Although Thyroid transcription factor-1 (TTF-1, encoded by NKX2-1 gene) is highly expressed in small cell lung carcinoma (SCLC) and lung adenocarcinoma (LADC), difference in the functional roles of TTF-1 between SCLC and LADC remains to be elucidated. The aim of this study was to clarify the differences in the TTF-1 binding regions and functional roles in SCLC and LADC. Employing chromatin immunoprecipitation-sequencing (ChIP-seq) , here we compared the genome-wide TTF-1-binding profiles and the TTF-1-mediated transcriptional programs in a SCLC and a LADC cell lines. We also investigated ASCL1 binding regions in SCLC cells.
Project description:We evaluated the role of TTF-1/NKX2-1 on Smad3 and Smad4 binding in lung cancer cell lines. Smad3 binding sites in A549 cells and Smad3, Smad4, and TTF-1/NKX2-1 binding sites in H441 cells were determined by ChIP-seq.
Project description:Thyroid transcription factor-1 (TTF-1), also known as NKX2-1, plays a role as a lineage-survival oncogene in lung adenocarcinoma with double-edged sword characteristics. Although previous studies steadily accumulated evidence for roles of TTF-1 in the transcriptional regulation of protein-coding genes, very little is known about its regulatory relationship with miRNAs. In this study, we have identified miR-532-5p as a novel transcriptional target of TTF-1 by an integrative approach, which was designed to extract maximal information from expression profiles of both patient tumors in vivo and TTF-1-inducible cell lines in vitro. Consequently, we have found that miR-532-5p is directly regulated by TTF-1 through its binding to a genomic region 8 kb upstream of miR-532-5p, which appeared to impose transcriptional regulation independent of that of CLCN5, a protein-coding gene harboring miR-532-5p in its intron 3. Further, we have also identified KRAS and MKL2 as novel direct targets of miR-532-5p. Introduction of miR-532-5p mimics markedly induced apoptosis in KRAS-mutant as well as KRAS wildtype lung adenocarcinoma cell lines. Interestingly, miR-532-5p affected the MEK-ERK pathway signaling specifically in cell lines sensitive to siKRAS treatment, while the miR-532-5p-mediated effects were clearly phenocopied by repressing expression or inhibiting function of MKL2 regardless of KRAS mutation status. In summary, our findings demonstrate that miR-532-5p is as novel transcriptional target of TTF-1 and plays a tumor suppressive role by targeting KRAS and MKL2 in lung adenocarcinoma. Novel therapeutic strategies using miR-532-5p or an MKL2 inhibitor may prove effective against this hard-to-cure cancer irrespective of the dependence on KRAS-mediated signaling.
Project description:Thyroid transcription factor-1 (TTF-1), also known as NKX2-1, plays a role as a lineage-survival oncogene in lung adenocarcinoma with double-edged sword characteristics. Although previous studies steadily accumulated evidence for roles of TTF-1 in the transcriptional regulation of protein-coding genes, very little is known about its regulatory relationship with miRNAs. In this study, we have identified miR-532-5p as a novel transcriptional target of TTF-1 by an integrative approach, which was designed to extract maximal information from expression profiles of both patient tumors in vivo and TTF-1-inducible cell lines in vitro. Consequently, we have found that miR-532-5p is directly regulated by TTF-1 through its binding to a genomic region 8 kb upstream of miR-532-5p, which appeared to impose transcriptional regulation independent of that of CLCN5, a protein-coding gene harboring miR-532-5p in its intron 3. Further, we have also identified KRAS and MKL2 as novel direct targets of miR-532-5p. Introduction of miR-532-5p mimics markedly induced apoptosis in KRAS-mutant as well as KRAS wildtype lung adenocarcinoma cell lines. Interestingly, miR-532-5p affected the MEK-ERK pathway signaling specifically in cell lines sensitive to siKRAS treatment, while the miR-532-5p-mediated effects were clearly phenocopied by repressing expression or inhibiting function of MKL2 regardless of KRAS mutation status. In summary, our findings demonstrate that miR-532-5p is as novel transcriptional target of TTF-1 and plays a tumor suppressive role by targeting KRAS and MKL2 in lung adenocarcinoma. Novel therapeutic strategies using miR-532-5p or an MKL2 inhibitor may prove effective against this hard-to-cure cancer irrespective of the dependence on KRAS-mediated signaling.
Project description:Thyroid transcription factor-1 (TTF-1), also known as NKX2-1, plays a role as a lineage-survival oncogene in lung adenocarcinoma with double-edged sword characteristics. Although previous studies steadily accumulated evidence for roles of TTF-1 in the transcriptional regulation of protein-coding genes, very little is known about its regulatory relationship with miRNAs. In this study, we have identified miR-532-5p as a novel transcriptional target of TTF-1 by an integrative approach, which was designed to extract maximal information from expression profiles of both patient tumors in vivo and TTF-1-inducible cell lines in vitro. Consequently, we have found that miR-532-5p is directly regulated by TTF-1 through its binding to a genomic region 8 kb upstream of miR-532-5p, which appeared to impose transcriptional regulation independent of that of CLCN5, a protein-coding gene harboring miR-532-5p in its intron 3. Further, we have also identified KRAS and MKL2 as novel direct targets of miR-532-5p. Introduction of miR-532-5p mimics markedly induced apoptosis in KRAS-mutant as well as KRAS wildtype lung adenocarcinoma cell lines. Interestingly, miR-532-5p affected the MEK-ERK pathway signaling specifically in cell lines sensitive to siKRAS treatment, while the miR-532-5p-mediated effects were clearly phenocopied by repressing expression or inhibiting function of MKL2 regardless of KRAS mutation status. In summary, our findings demonstrate that miR-532-5p is as novel transcriptional target of TTF-1 and plays a tumor suppressive role by targeting KRAS and MKL2 in lung adenocarcinoma. Novel therapeutic strategies using miR-532-5p or an MKL2 inhibitor may prove effective against this hard-to-cure cancer irrespective of the dependence on KRAS-mediated signaling.
Project description:We investigated the clinical implications of lung developmental transcription factors (TTF-1, NKX2-8, and PAX9) which we recently discovered as cooperating oncogenes activated by way of gene amplification at chromosome 14q13 in lung cancer. Using stable transfectants of human bronchial epithelial cells, RNA expression profiles (signatures) representing activation of the biological pathways defined by each of the three genes were determined and used to risk stratify a non-small cell lung cancer (NSCLC) clinical dataset consisting of ninety-one early stage tumors. Co-activation of the TTF-1 and NKX2-8 pathways identified a cluster of patients with poor survival, representing approximately 20% of patients with early stage NSCLC, whereas activation of individual pathways did not reveal significant prognostic power. Importantly, the poor prognosis associated with co-activation of TTF-1 and NKX2-8 was validated in two other independent clinical datasets. Further, lung cancer cell lines showing co-activation of the TTF-1 and NKX2-8 pathways were shown to exhibit resistance to cisplatin, the standard of care for the treatment of NSCLC. Since TTF-1 and NKX2-8 lack specific inhibitors at the current time, we explored an alternative therapeutic strategy. Using signatures of signaling pathway activation, we identified deregulation of specific oncogenic pathways (Ras and Myc) in the TTF-1/NKX2-8 co-activated cohort. In vitro experiments demonstrated the ability of a Ras pathway-specific therapy to inhibit tumor cell growth in TTF-1/NKX-2 activated cells, thus, suggesting that modulation of the Ras pathway is a rational strategy to targeted therapy in high risk NSCLC patients with co-activation of specific lung developmental pathways. Keywords: Transcription factor expression analysis