Project description:Arabidopsis thaliana is a glycophyte with a low salt tolerance, while Eutrema is a halophyte with a very high salt tolerance. To elucidate the transcriptional basis of this difference, we performed hydroponis culture experiments where we grew plants under control conditions (25 mM NaCl) or under salt stress (200 mM NaCl for both species, 500 mM for Eutrema). Salt concentration was increased for the stress treatments by increments of 50 mM per day (25 mM on the first day). Plants were grown at the final NaCl concentration for an additional week, when rosettes were harvested for RNA isolation.Expression patterns were compared between treatments and between species. In total, 15 samples were hybridized. They were derived from three independent biological experiments (replicate_1 to replicate_3). Controlds were grown at 25 mM NaCl, salt stressed plants at either 200 mM NaCl or 500 mM NaCl.
Project description:Arabidopsis thaliana is a glycophyte with a low salt tolerance, while Eutrema is a halophyte with a very high salt tolerance. To elucidate the transcriptional basis of this difference, we performed hydroponis culture experiments where we grew plants under control conditions (25 mM NaCl) or under salt stress (200 mM NaCl for both species, 500 mM for Eutrema). Salt concentration was increased for the stress treatments by increments of 50 mM per day (25 mM on the first day). Plants were grown at the final NaCl concentration for an additional week, when rosettes were harvested for RNA isolation.Expression patterns were compared between treatments and between species.
Project description:We used RNA-seq to profile gene expression changes during flg22 activated pattern-triggered immunity in multiple Brassicaceae including Capsella rubella, Cardamine hirsuta and Eutrema salsugineum as well as in multiple Arabidopsis thaliana accessions. This allows comparative transcriptomics within and across species to investigate the evolution of stress-responsive transcrption changes in these species.
Project description:Aspergillus flavus and A. oryzae represent two unique species predicted to have spent centuries in vastly different environments. A. flavus is an important opportunistic plant pathogen known for contaminating crops with the carcinogenic mycotoxin, aflatoxin and A. oryzae is a domesticated fungus used in food fermentations. Remarkably, the genomes of these two species are still nearly identical. We have used the recently sequenced genomes of A. oryzae RIB40 and A. flavus NRRL3357 along with array based comparative genome hybridization (CGH) as a tool to compare genomes across several strains of these two species. A comparison of three strains from each species by CGH revealed only 42 and 129 genes unique to A. flavus and A. oryzae, respectively. Further, only 709 genes were identified as being polymorphic between the species. Despite the high degree of similarity between these two species, correlation analysis among all data from the CGH arrays for all strains used in this study reveals a species split. However, this view of species demarcation becomes muddled when focused on only those genes for secondary metabolism.
Project description:Arabidopsis thaliana and Eutrema salsugineum show the ability to cold acclimate. However, the degree of freezing tolerance depends in both cases on the accession. To elucidate the transcriptional basis of this differencial freezing tolerance, we performed where we grew plants under control conditions (20°C/18°C day/night) or under cold conditions (additional 4°C for 2 weeks). Rosettes were harvested from non-acclimated and cold acclimated plants for RNA isolation. Expression patterns were compared between treatments, accessions and species.
Project description:Aspergillus flavus and A. oryzae represent two unique species predicted to have spent centuries in vastly different environments. A. flavus is an important opportunistic plant pathogen known for contaminating crops with the carcinogenic mycotoxin, aflatoxin and A. oryzae is a domesticated fungus used in food fermentations. Remarkably, the genomes of these two species are still nearly identical. We have used the recently sequenced genomes of A. oryzae RIB40 and A. flavus NRRL3357 along with array based comparative genome hybridization (CGH) as a tool to compare genomes across several strains of these two species. A comparison of three strains from each species by CGH revealed only 42 and 129 genes unique to A. flavus and A. oryzae, respectively. Further, only 709 genes were identified as being polymorphic between the species. Despite the high degree of similarity between these two species, correlation analysis among all data from the CGH arrays for all strains used in this study reveals a species split. However, this view of species demarcation becomes muddled when focused on only those genes for secondary metabolism. CGH comparison between 3 strains of A. flavus and 3 strains of A. oryzae, analyzed at the probe level