Project description:Background:H2-ethanol-coproducing bacteria, as primary fermenters, play important roles in the microbiome of bioreactors for bioenergy production from organic wastewater or solid wastes. Ethanoligenens harbinense YUAN-3 is an anaerobic ethanol-H2-fermenting bacterium. Ethanol is one of the main end-products of strain YUAN-3 that influence its fermentative process. Until recently, the molecular mechanism of metabolic regulation in strain YUAN-3 during ethanol accumulation has still been unclear. This study aims to elucidate the metabolic regulation mechanisms in strain YUAN-3, which contributes to effectively shape the microbiome for biofuel and bioenergy production from waste stream. Results:This study reports that ethanol stress altered the distribution of end-product yields in the H2-ethanol-coproducing Ethanoligenens harbinense strain YUAN-3. Decreasing trends of hydrogen yield from 1888.6?±?45.8 to 837?±?64.7 mL L-1 and acetic acid yield from 1767.7?±?45 to 160.6?±?44.7 mg L-1 were observed in strain YUAN-3 with increasing exogenous ethanol (0 mM-200 mM). However, the ethanol yield of strain YUAN-3 increased by 15.1%, 30.1%, and 27.4% in 50 mM, 100 mM, and 200 mM ethanol stress, respectively. The endogenous ethanol accounted for 96.1% (w/w) in liquid end-products when exogenous ethanol of 200 mM was added. The molar ratio of ethanol to acetic acid increased 14 times (exogenous ethanol of 200 mM) compared to the control. iTRAQ-based quantitative proteomic analysis indicated that 263 proteins of strain YUAN-3 were differentially expressed in 50 mM, 100 mM, and 200 mM of exogenous ethanol. These proteins are mainly involved in amino acid transport and metabolism, central carbon metabolism, and oxidative stress response. Conclusion:These differentially expressed proteins play important roles in metabolic changes necessary for growth and survival of strain YUAN-3 during ethanol stress. The up-regulation of bifunctional acetaldehyde-CoA/alcohol dehydrogenase (ADHE) was the main reason why ethanol production was enhanced, while hydrogen gas and acetic acid yields declined in strain YUAN-3 during ethanol stress. This study also provides a new approach for the enhancement of ethanologenesis by H2-ethanol-coproducing bacteria through exogenous ethanol addition.
| S-EPMC6598285 | biostudies-literature
Project description:transcriptome of Ethanoligenens harbinense YUAN-3
Project description:BackgroundEthanol-type fermentation, one of the fermentation types in mixed cultures of acidogenesis with obvious advantages such as low pH tolerance and high efficiency of H2 production, has attracted widespread attentions. pH level greatly influences the establishment of the fermentation of carbohydrate acidogenesis by shaping community assembly and the metabolic activity of keystone populations. To explore the adaptation mechanisms of ethanol-type fermentation to low pH, we report the effects of initial pH on the physiological metabolism and transcriptomes of Ethanoligenens harbinense-a representative species of ethanol-type fermentation.ResultsDifferent initial pH levels significantly changed the cell growth and fermentation products of E. harbinense. Using transcriptomic analysis, we identified and functionally categorized 1753 differentially expressed genes (DEGs). By mining information on metabolic pathways, we probed the transcriptional regulation of ethanol-H2 metabolism relating to pH responses. Multiple pathways of E. harbinense were co-regulated by changing gene expression patterns. Low initial pH down-regulated the expression of cell growth- and acidogenesis-related genes but did not affect the expression of H2 evolution-related hydrogenase and ferredoxin genes. High pH down-regulated the expression of H2 evolution- and acidogenesis-related genes. Multiple resistance mechanisms, including chemotaxis, the phosphotransferase system (PTS), and the antioxidant system, were regulated at the transcriptional level under pH stress.ConclusionsEthanoligenens adapted to low pH by regulating the gene expression networks of cell growth, basic metabolism, chemotaxis and resistance but not H2 evolution-related genes. Regulation based on pH shifts can represent an important approach to establish and enhance ethanol-type fermentation. The complete gene expression network of ethanol fermentative bacteria for pH response provides valuable insights into the acidogenic fermentation, and offers an effective regulation strategy for the sustainable energy recovery from wastewater and solid waste.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).