Project description:The sea-ice dwelling diatom Fragilariopsis Cylindrus was cultured for 4 months under dark or light exposed conditions to mimic the effects of Antarctic winter growth conditions. Cells were harvested periodically and LFQ proteomics used to investigate the molecular mechanisms of dark survival.
Project description:The genome of the cold-adapted diatom Fragilariopsis cylindrus is characterized by highly diverged haplotypes that intersperse its homozygous genome. Here, we describe how a combination of PacBio DNA and Illumina RNA sequencing can be used to resolve this complex genomic landscape locally into the highly diverged haplotypes, and how to map various environmentally controlled transcripts onto individual haplotypes. We assembled PacBio sequence data with the FALCON assembler and created a haplotype resolved annotation of the assembly using annotations of a Sanger sequenced F. cylindrus genome. RNA-seq datasets from six different growth conditions were used to resolve allele-specifc gene expression in F. cylindrus. This approach enables to study differential expression of alleles in a complex genomic landscape and provides a useful tool to study how diverged haplotypes in diploid organisms are used for adaptation and evolution to highly variable environments.
Project description:We performed RNA-sequencing experiments to examine the differential regulation of genes in the genome of the Southern Ocean diatom Fragilariopsis cylindrus including diverged alleles. RNA-seq was performed on three replicate samples for each experimental condition. Phytoplankton cells were grown under six different experimental conditions including (1) optimal growth, (2) freezing temperatures, (3) elevated temperature, (4) elevated carbon dioxide concentrations, (5) low iron concentrations and (6) prolonged darkness. Total RNA was extracted using a guanidinium thiocyanate-phenol-chloroform extraction protocol, followed by DNase I treatment and RNA purification (Quiagen). First strand cDNA synthesis was performed using random hexamers. Library preparation was performed using the RNA-seq Sample Prep Kit (Illumina) and sequencing was conducted according to the TruSeq RNA sequencing protocol (Illumina) All samples were sequenced together in one flowcell on one lane.
Project description:Diatoms, the major eukaryotic phytoplankton in polar regions, are essential to sustain food webs. As such, it is fundamental to understand the physiological mechanisms and associated molecular basis of resilience to polar night of diatoms. Here, we report an integrative approach that reveals that in prolonged darkness, the cell enters a state of hypometabolism associated with reduced transcriptional activity during which no cell division occurs. Minimal energy is provided by respiration via alternative oxidase and progressive degradation of protein, carbohydrate and lipid stores. We also report internal structural changes that manifest the morphological acclimation of cells to darkness. Our results further indicate that immediately after returning to light, the majority of cells were able to use photoprotective mechanisms and resume photosynthesis. Divisions of surviving cells resumed at rates similar to those before darkness. Our study demonstrates the robustness of this species to prolonged darkness at low temperatures.
Project description:Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme sea ice habitat.
Project description:The Southern Ocean diatom Fragilariopsis cylindrus was grown under half-saturating concentrations of silicate (0.3 uM) and in the blue (480 - 540 nm) and red (550 - 700 nm) light spectrum to investigate gene expression responses using RNA-seq relative to optimal growth conditions (deposited under accession E-MTAB-5024). RNA-seq was performed on three replicate samples for each experimental condition. Total RNA was extracted using a guanidinium thiocyanate-phenol-chloroform extraction protocol, followed by DNase I treatment and RNA purification (Quiagen). First strand cDNA synthesis was performed using random hexamers. Library preparation was performed using the RNA-seq Sample Prep Kit (Illumina) and sequencing was conducted according to the TruSeq RNA sequencing protocol (Illumina) All samples were sequenced together in one flowcell on one lane.
Project description:Light underneath Antarctic sea-ice is below detectable limits for up to 4 months of the year. The ability of Antarctic sea-ice diatoms to survive this prolonged darkness relies on their metabolic capability. This study is the first to examine the proteome of a prominent sea-ice diatom in response to extended darkness, focusing on the protein-level mechanisms of dark survival. The Antarctic diatom Fragilariopsis cylindrus was grown under continuous light or darkness for 120 d. The whole cell proteome was quantitatively analysed by nano-LC-MS/MS to investigate metabolic changes that occur during sustained darkness and during recovery under illumination. Enzymes of metabolic pathways, particularly those involved in respiratory processes, tricarboxylic acid cycle, glycolysis, the Entner-Doudoroff pathway, the urea cycle and the mitochondrial electron transport chain became more abundant in the dark. Within the plastid, carbon fixation halted while the upper sections of the glycolysis, gluconeogenesis and pentose phosphate pathways became less active. We have discovered how F. cylindrus utilises an ancient alternative metabolic mechanism that enables its capacity for long-term dark survival. By sustaining essential metabolic processes in the dark, F. cylindrus retains the functionality of the photosynthetic apparatus, ensuring rapid recovery upon re-illumination.