Project description:By comparing blood mRNA responses of women with biopsy confimed Chlamydia trachomatis (CT) and/or Neisseria gonorrhoeae (GC) induced pelvic inflammatory disease (PID) to those from women with CT and/or GC infection limited to their cervix and asymptomatic uninfected women determined via microarray, we discovered important pathogenic mechanisms in PID and response differences that provide a pathway to biomarker discovery. Women with GC and/or CT-induced PID exhibit overexpression of myeloid cell genes and suppression of protein synthesis, mitochondrial oxidative phosphorylation, and T-cell specific genes. Coinfected women exhibited the greatest activation of cell death pathways and suppression of responses essential for adaptive immunity. Blood microarrays reveal discrete pathobiological endotypes in women with PID that are driven by pathogen invasion of the upper genital tract.
Project description:Sexually transmitted infections with Chlamydia trachomatis and/or Neisseria gonorrhoeae and rates of pelvic inflammatory disease (PID) in women continue to rise, with reinfection being common because of poor adaptive immunity. Diagnosis remains imprecise, and pathogenesis data are derived primarily from monoinfection of mice with C. trachomatis or N. gonorrhoeae By comparing blood mRNA responses of women with C. trachomatis- and/or N. gonorrhoeae-induced PID and histologic endometritis with those from women with C. trachomatis and/or N. gonorrhoeae infection limited to their cervix and asymptomatic uninfected women determined via microarray, we discovered important pathogenic mechanisms in PID and response differences that provide a pathway to biomarker discovery. Women with N. gonorrhoeae- and/or C. trachomatis-induced PID exhibit overexpression of myeloid cell genes and suppression of protein synthesis, mitochondrial oxidative phosphorylation, and T cell-specific genes. Coinfected women exhibited the greatest activation of cell death pathways and suppression of responses essential for adaptive immunity. Women solely infected with C. trachomatis expressed elevated levels of type I and type II IFN genes, and enhanced type I IFN-induced chemokines in cervical secretions were associated with ascension of C. trachomatis to the endometrium. Blood microarrays reveal discrete pathobiological endotypes in women with PID that are driven by pathogen invasion of the upper genital tract.
Project description:Purpose: Damage to the uterosacral ligaments is an important contributor to uterine and vaginal prolapse. The aim of this study was to identify differentially expressed proteins in the uterosacral ligaments of women with and without pelvic organ prolapse and analyze their relationships to cellular mechanisms involved in the pathogenesis of pelvic organ prolapse. Experimental Design: Uterosacral ligament connective tissue from four patients with pelvic organ prolapse and four control women underwent iTRAQ analysis followed by Ingenuity Pathway Analysis of differentially expressed proteins. Differentially expressed proteins were valideated using western blot analysis. Results: A total of 1789 unique protein sequences were identified in the uterosacral ligament connective tissues. 88 proteins had expression levels that were significantly different between prolapse and control groups (≥1.2-fold). Ingenuity pathway analysis demonstrated 14 differentially expressed proteins that were associated with "Connective Tissue Function". Among them, fibromodulin(FMOD), Collagen alpha-1 (XIV) chain(COL14A1), Calponin-1 (CNN-1), Tenascin (TNC), and Galectin-1(LGALS1 appeared most likely to play a role in the etiology of pelvic organ prolapse. Conclusions and clinical relevence: We identified at least 6 proteins not previously associated with the pathogenesis of pelvic organ prolapse with biologic functions that suggest a plausible relationship to the disorder. These results may be helpful for furthering our understanding of the pathophysiological mechanisms of pelvic organ prolapse.
Project description:Introduction and Hypothesis: Identify processes contributing to pelvic organ prolapse (POP) by transcriptional profiling of pelvic connective tissue in conjunction with light microscopy. Methods: We performed a frequency matched case-control study of women undergoing hysterectomy. Total RNA, extracted from uterosacral and round ligament samples used to generate labeled cRNA, was hybridized to microarrays and analyzed for the expression of 32,878 genes. Significance Analysis of Microarrays, (Stanford University, CA), identified differentially expressed genes used for ontoanalysis, and quantitative PCR (qPCR) confirmed results. Light microscopy confirmed tissue type and assessed inflammatory infiltration. Results: The analysis of thirty-four arrays revealed 249 differentially expressed genes with fold changes larger than 1.5 fold and false discovery rates M-bM-^IM-$5.2%. Immunity and Defense was the most significant biological process differentially expressed in POP. Selected qPCR confirmed 4 genes. Light microscopy showed no inflammatory infiltrates. Conclusions: Genes enriched for Immunity and Defense contribute to POP independent of inflammatory infiltrates. Keywords: whole tissue (endopelvic fascia) type comparison This was a group matched case control study of 8 women with pelvic organ prolapse versus 9 non-prolapse controls, both undergoing hysterectomy for benign conditions. Two separate pelvic support tissues were collected from each patient. The uterosacral ligament and round ligament tissue was removed at the time of hysterectomy, RNA was extracted and ABI whole genome chips used to identify differences in expression profiles of individual samples. Various ethnic groups, age groups and menopausal status were included.
Project description:COPD is a heterogeneous condition without effective disease modifying therapies. Identification of novel inflammatory endotype markers such as extracellular vesicles (EVs), which are important intercellular messengers carrying microRNA (miRNA), may enable earlier diagnosis and disease stratification for a targeted treatment approach. Our aim was to identify differentially expressed EV miRNA in the lungs of COPD patients compared with healthy ex-smokers and determine whether they can help define inflammatory COPD endotypes. EV miRNA were isolated and sequenced from ex-smoking COPD patients and healthy ex-smoker bronchoalveolar lavage fluid. Results were validated with RT-qPCR and compared to differential inflammatory cell counts. Differential expression analysis identified five upregulated miRNA in COPD (miR-223-3p, miR-2110, miR-182-5p, miR-200b-5p and miR-625-3p) and three downregulated miRNA (miR-138-5p, miR-338-3p and miR-204-5p), all with a log2 fold change of >1/-1, FDR<0.05. These miRNAs correlated with disease defining characteristics such as FEF 25-75% (a small airways disease measure) and DLCO % (a surrogate measure of emphysema). Receiver operator curve analysis demonstrated miR-2110, miR-223-3p and miR-182-5p showed excellent combinatory predictive ability (AUC 0.91, p<0.0001) in differentiating between health and mild COPD. Furthermore, miR-223-3p and miR-338-3p correlated with airway eosinophilia and were able to distinguish “pure eosinophilic” COPD from other airway inflammatory subtypes (AUC 0.94 and 0.85 respectively). This is the first study to identify differentially expressed miRNA in COPD bronchoalveolar lavage fluid EVs. These findings suggest specific lung derived EV miRNA are a strong predictor of disease presence even in mild COPD. Furthermore, specific miRNA correlated with inflammatory cell numbers in COPD, and may have a role in defining inflammatory endotypes for future treatment stratification.
Project description:Introduction and Hypothesis: Identify processes contributing to pelvic organ prolapse (POP) by transcriptional profiling of pelvic connective tissue in conjunction with light microscopy. Methods: We performed a frequency matched case-control study of women undergoing hysterectomy. Total RNA, extracted from uterosacral and round ligament samples used to generate labeled cRNA, was hybridized to microarrays and analyzed for the expression of 32,878 genes. Significance Analysis of Microarrays, (Stanford University, CA), identified differentially expressed genes used for ontoanalysis, and quantitative PCR (qPCR) confirmed results. Light microscopy confirmed tissue type and assessed inflammatory infiltration. Results: The analysis of thirty-four arrays revealed 249 differentially expressed genes with fold changes larger than 1.5 fold and false discovery rates ≤5.2%. Immunity and Defense was the most significant biological process differentially expressed in POP. Selected qPCR confirmed 4 genes. Light microscopy showed no inflammatory infiltrates. Conclusions: Genes enriched for Immunity and Defense contribute to POP independent of inflammatory infiltrates. Keywords: whole tissue (endopelvic fascia) type comparison
Project description:Vaginal microbiota in ethnically diverse young women who did or did not develop pelvic inflammatory disease: community-based prospective study
Project description:Interventions: Group 1: A PAP smear and HPV will be taken in women with inflammatory bowel disease
Primary outcome(s): Frequency of Cervical intraepithelial neoplasia and human paplloma Virus in women with inflammatory bowel disease
Study Design: Allocation: ; Masking: ; Control: ; Assignment: ; Study design purpose: diagnostic
Project description:Investigators propose a retrospective cohort study to examine the impact of radiation therapy on the global pelvic floor function of women who have completed the immediate surveillance period for colorectal cancer
Project description:Endometriosis, an estrogen-dependent, progesterone-resistant, inflammatory disorder affects 10% of reproductive-age women. It is diagnosed and staged at surgery, resulting in an 11-year latency from symptom onset to diagnosis, underscoring the need for less invasive, less expensive approaches. Since the uterine lining (endometrium) in women with endometriosis has altered molecular profiles, we tested whether molecular classification of this tissue can distinguish and stage disease. We developed classifiers using genomic data from n=148 archived endometrial samples from women with endometriosis or without endometriosis (normal controls or with other common uterine/pelvic pathologies) across the menstrual cycle and evaluated their performance on independent sample sets. Classifiers were trained separately on samples in specific hormonal milieu, using margin tree classification, and accuracies were scored on independent validation samples. Classification of samples from women with endometriosis or no endometriosis involved two binary decisions each based on expression of specific genes. These first distinguished presence or absence of uterine/pelvic pathology and then no endometriosis from endometriosis, with the latter further classified according to severity (minimal/mild or moderate/severe). Best performing classifiers identified endometriosis with 90-100% accuracy, were cycle phase-specific or independent, and utilized relatively few genes to determine disease and severity. Differential gene expression and pathway analyses revealed immune activation, altered steroid and thyroid hormone signaling/metabolism and growth factor signaling in endometrium of women with endometriosis. Similar findings were observed with other disorders versus controls. Thus, classifier analysis of genomic data from endometrium can detect and stage pelvic endometriosis with high accuracy, dependent or independent of hormonal milieu. We propose that limited classifier candidate-genes are of high value in developing diagnostics and identifying therapeutic targets. Discovery of endometrial molecular differences in the presence of endometriosis and other uterine/pelvic pathologies raises the broader biological question of their impact on the steroid hormone response and normal functions of this tissue. We analyzed endometrial samples from n=148 women without or with endometriosis and/or other uterine/pelvic pathologies, using whole genome microarrays.