Project description:Eosinophils are important in fighting parasitic infections and are implicated in the pathogenesis of asthma and allergy. Interleukin-5 (IL-5) is a critical regulator of eosinophil development, controlling proliferation, differentiation and maturation of the lineage. Mice that constitutively express IL-5 have more than 10 fold more eosinophils in the haematopoietic organs than their wild type counterparts. We have identified that much of this expansion is in a population of Siglec-F high eosinophils, which are rare in wild type mice. In this study we assessed transcription in myeloid progenitors, eosinophil precursors and Siglec-F medium and Siglec-F high eosinophils from IL-5 transgenic mice and in doing so have created a useful resource for eosinophil biologists. We have then utilised these populations to construct an eosinophil trajectory based on gene expression and to identify gene sets that are associated with eosinophil lineage progression. Cell cycle genes were significantly associated with the trajectory, and we experimentally demonstrate an increasing trend towards quiescence along the trajectory. Additionally we found gene expression changes associated with constitutive IL-5 signalling in eosinophil progenitors, many of which were not observed in eosinophils.
Project description:Eosinophils are important in fighting parasitic infections and are implicated in the pathogenesis of asthma and allergy. IL-5 is a critical regulator of eosinophil development, controlling proliferation, differentiation, and maturation of the lineage. Mice that constitutively express IL-5 have in excess of 10-fold more eosinophils in the hematopoietic organs than their wild type (WT) counterparts. We have identified that much of this expansion is in a population of Siglec-F high eosinophils, which are rare in WT mice. In this study, we assessed transcription in myeloid progenitors, eosinophil precursors, and Siglec-F medium and Siglec-F high eosinophils from IL-5 transgenic mice and in doing so have created a useful resource for eosinophil biologists. We have then utilized these populations to construct an eosinophil trajectory based on gene expression and to identify gene sets that are associated with eosinophil lineage progression. Cell cycle genes were significantly associated with the trajectory, and we experimentally demonstrate an increasing trend toward quiescence along the trajectory. Additionally, we found gene expression changes associated with constitutive IL-5 signaling in eosinophil progenitors, many of which were not observed in eosinophils.
Project description:Total RNA was isolated from interleukin 7 (overexpressed) transgenic mice-derived pre-leukaemic cell line B3, labelled cRNA was prepared and hybridised to Affymetrix Mouse 430 2.0 arrays.
Project description:Human PBMC, there are major T, B, Dc, Basophil, Eosinophil and Neutrophil subsets with typical biological functions. The characteristic behavior of each subset was determined by its unique gene expression and regulation. Difference between each subset or different treatment to the same subset will induce huge amount different gene expression. This will provide the basic evidence of understanding why and how each subset cells functions properly. We used microarrays to detail the global programme of gene expression in each subsets of human PBMC and identified distinctly up-regulated genes during this process.
Project description:The recognition of the immune system as a key component of the tumor microenvironment (TME) led to promising therapeutics. Since such therapies benefit only subsets of patients, understanding the activities of immune cells in the TME is required. Eosinophils are an integral part of the TME especially in mucosal tumors. Nonetheless, their role in the TME and the environmental cues that direct their activities are largely unknown, especially in metastasis. We report that breast cancer-driven lung metastasis is characterized by resident and recruited eosinophils. Eosinophil recruitment to the metastatic lung was regulated by G protein coupled receptor signaling but independent of CCR3. Functionally, eosinophils promoted lymphocyte-mediated anti tumor immunity. Transcriptome and proteomic analyses identified the TME rather than intrinsic differences between eosinophil subsets as a key instructing factor directing anti tumorigenic eosinophil activities. Specifically, TNF-a/IFN-g-activated eosinophils facilitated CD4+ and CD8+ T cell infiltration and promoted anti-tumor immunity. Collectively, we identify a mechanism by which the TME entrains eosinophils to adopt anti-tumorigenic properties, which may lead to the development of eosinophil-targeted therapeutics.
Project description:Macrophages (Mf) are instrumental in maintaining immune homeostasis in the intestine, yet studies on origin and heterogeneity of human intestinal Mf are scarce. Here, we identified four distinct Mf subpopulations in human small intestine (SI). Assessment of their turnover in duodenal transplants revealed that all Mf subsets were completely replaced over time; Mf1 and Mf2, phenotypically similar to peripheral blood monocytes (PBMo), were largely replaced within 3 weeks, whereas two subsets with features of mature Mf, Mf3 and Mf4, exhibited significantly slower replacement. Mf3 and Mf4 localized differently in SI; Mf3 formed a dense network in mucosal lamina propria, whereas Mf4 was enriched in submucosa. Transcriptomic analysis showed that all Mf subpopulations subsets were markedly distinct from PBMo and dendritic cells (DC). Compared to PBMo, Mf subpopulations showed reduced responsiveness to proinflammatory stimuli, but were proficient at endocytosis of particulate and soluble material. These data provide a comprehensive analysis of human SI Mf population and suggest a precursor-progeny relationship with PBMo.
Project description:We detected BALF exosome-derived proteins from adult Scnn1b transgenic (Scnn1b-Tg+) and wild type (WT) mice. A total of 3144 and 3119 proteins were identified in BALF exosomes from Scnn1b-Tg+ and WT mice, respectively.
Project description:Transcriptional profiling of HCV core transgenic mice liver comparing nontransgenic mice liver or HCV core transgenic mice liver with various core expression levels. Exp I: Double transgenic mice DTM with high core vs single transgenic mice STM (triplicate); ExpII: DTM with modest core vs STM (triplicate); ExpIII: DTM with modest core vs DTM with high core (triplicate).