Project description:We obtained placental issue between days 27 and 34 of pregnancy from matched mare and stallion pairs. We used whole transcriptome profiling in order to measure and compare gene expression in chorionic girdle trophoblast and adjacent regressing chorion at pregnancy day 27 (initiation of proliferation and prior to differentiation), day 30 (initiation of differentiation), day 31 (consolidation of differentiation and movement of cells) and day 34 (when the majority of the trophoblast cells have terminally differentiated into binucleate eCG-secreting trophoblast and have started to obtain invasive qualities and immunomodulatory capacities). Differentially expressed genes were then identified to determine functions and signalling pathways whose activity was modulated over this critical period of trophoblast development. A selection of genes and pathways were subsequently validated.
Project description:26 limb-girdle muscular dystrophy patients from Latvia and 34 patients from Lithuania with clinical symptoms of limb-girdle muscular dystrophies, along with 204 healthy unrelated controls were genotyped for 96 most frequent known limb-girdle muscular dystrophies causing mutations for the region, using VeraCode GoldenGate system. More information can be found in article Robust genotyping tool for autosomal recessive type of limb-girdle muscular dystrophies in BMC Musculoskeletal Disorders by I. Inashkina et al.
Project description:The objective of this study was to identify transcription factors associated with differentiation of the chorionic girdle, the invasive form of equine trophoblast. The expression patterns of five transcription factors were determined on a panel of conceptus tissues from early horse pregnancy. Tissues from Days 15 through 46 were tested. Eomesodermin (EOMES), glial cells missing homologue 1 (GCM1), heart and neural crest derivatives expressed transcript 1 (HAND1), caudal type homeobox 2 (CDX2), and distal-less homeobox 3 (DLX3) were detected in horse trophoblast, but the expression patterns for these genes varied. EOMES had the most restricted distribution, while DLX3 CDX2, and HAND1 were widely expressed. GCM1 seemed to increase in the developing chorionic girdle, and this was confirmed by quantitative RT-PCR assays. GCM1 expression preceded a striking increase in expression of equine chorionic gonadotropin beta (CGB) in the chorionic girdle, and binding sites for GCM1 were discovered in the promoter region of the CGB gene. GCM1, CGB, and CGA mRNA were expressed preferentially in binucleate cells as opposed to uninucleate cells of the chorionic girdle. Based on these findings, it is likely that GCM1 has a role in differentiation and function of the invasive trophoblast of the equine chorionic girdle and endometrial cups. The equine binucleate chorionic girdle (CG) secreting trophoblast shares molecular, morphological, and functional characteristics with human syncytiotrophoblast and represents a model for studies of human placental function.
Project description:We undertook gene expression microarray experiments to identify genes that are differentially expressed in invasive (Chorionic Girdle) and non-invasive (Chorion) placental tissue, and resting and Pokeweed Mitogen (PWM) stimulated horse lymphocytes. Conceptus tissues were dissected to obtain chorionic girdle, and chorion. Freshly isolated horse peripheral blood lymphocytes were split and harvested immediately, or stimulated with PWM and harvested over a five day period. These experiments utilized a commercially available Agilent horse array that featured >43,000 probes on a 4x44k array format. Three day 33-35 chorionic girdle RNAs were compared to matching chorion RNAs. Gene expression in resting lymphocytes was compared to gene expression in PWM treated lymphocytes.
Project description:In the chorionic villi of placenta, trophoblasts and endothelial cells are present, and moreover mesenchymal cells (stromal cells) can be obtained. We generated cells with the mesenchymal phenotype from the chorionic mesoderm, and showed that: a) physiologically functioning cardiomyocytes were transdifferentiated from human placenta-derived chorionic villi cells, but these cells did not induce to osteoblasts and adipocytes ; b) the cardiomyogenic induction rate obtained using our system was relatively high compared to that obtained using the previously described method ; c) co-cultivation with fetal murine cardiomyocytes alone without transdifferentiation factors such as 5-azaC or oxytocin is sufficient for cardiomyogenesis in our system; d) Chorionic villi cells have the electrophysiological properties of 'working' cardiomyocytes. The chorionic mesoderm contained a large number of cells with a cardiomyogenic potential. Keywords: Cardiomyogenic induction
Project description:The invasive trophoblast cells of the equine placenta migrate into the endometrium to form endometrial cups, dense accumulations of trophoblast cells that produce equine chorionic gonadotropin between days 40 and 120 of normal pregnancy. The mechanisms by which the trophoblast cells invade the endometrium while evading maternal immune destruction are poorly defined. A gene expression microarray analysis performed on placental tissues obtained at day 34 of gestation revealed a >900-fold upregulation of mRNA encoding the cytokine IL-22 in chorionic girdle relative to noninvasive chorion. Quantitative RT-PCR assays were used to verify high expression of IL-22 in chorionic girdle. Additional quantitative RT-PCR analysis showed a striking increase in IL-22 mRNA expression in chorionic girdle from days 32 to 35 and an absence of IL-22 expression in other conceptus tissues. Bioinformatic analysis and cDNA sequencing confirmed the predicted length of horse IL-22, which carries a 3' extension absent in IL-22 genes of humans and mice, but present in the cow and pig. Our discovery of IL-22 in the chorionic girdle is a novel finding, as this cytokine has been previously reported in immune cells only. IL-22 has immunoregulatory functions, with primary action on epithelial cells. mRNA of IL-22R1 was detected in pregnant endometrium at levels similar to other equine epithelia. Based upon these findings, we hypothesize that IL-22 cytokine produced by the chorionic girdle binds IL-22R1 on endometrium, serving as a mechanism of fetal-maternal communication by modulating endometrial responses to trophoblast invasion.
Project description:We undertook gene expression microarray experiments to identify genes that are differentially expressed in invasive (Chorionic Girdle) and non-invasive (Chorion) placental tissue, and resting and Pokeweed Mitogen (PWM) stimulated horse lymphocytes. Conceptus tissues were dissected to obtain chorionic girdle, and chorion. Freshly isolated horse peripheral blood lymphocytes were split and harvested immediately, or stimulated with PWM and harvested over a five day period. These experiments utilized a commercially available Agilent horse array that featured >43,000 probes on a 4x44k array format.
Project description:The equine endometrium exhibits characteristic morphological and functional changes during the estrous cycle controlled by the interplay of progesterone and estradiol. A microarray analysis of endometrial tissue samples derived from 5 time points of the estrous cycle (D0, D3, D8, D12, and D16) was performed to study the dynamics of endometrial gene expression. Endometrial biopsies were collected from five mares (Bavarian Warmblood) at the respective time points. Samples were divided and subjected to isolation of RNA for microarray analysis and analysis of tissue composition. Blood samples were collected to determine serum progesterone levels for every sample. Statistical analysis of microarray data revealed almost 10,000 differential probes corresponding to 4,996 differentially expressed genes. A cluster analysis based on gene expression profiles during the estrous cycle revealed 8 major gene expression profiles: mRNAs with highest levels 1) at D0, 2) from D0 to D3, 3) at D3, 4) from D3 to D8, 5) at D8, 6) from D8 to D12, 7) from D12 to D16, and 8) at D16. DAVID Functional Annotation Clustering revealed overrepresentation of distinct functional terms in different phases of the cycle, e.g. M-bM-^@M-^Xextracellular matrixM-bM-^@M-^Y and M-bM-^@M-^Xprotein transportM-bM-^@M-^Y during estrus, M-bM-^@M-^XDNA replication and M-bM-^@M-^Xcell cycleM-bM-^@M-^Y during early luteal phase, M-bM-^@M-^Xendoplasmic reticulumM-bM-^@M-^Y and M-bM-^@M-^Xprotein transportM-bM-^@M-^Y in the luteal phase, and M-bM-^@M-^Xinflammatory responseM-bM-^@M-^Y in the late luteal and follicular phase. Expression of selected genes of the expression clusters was validated by quantitative Real-time PCR (qPCR). This study provides new insights into global changes of equine endometrial gene expression during the estrous cycle. Equine endometrial tissue samples were collected at 5 time points during the sexual (estrous) cycle from 5 mares (5 biological replicates per time point) and analyzed with Agilent microarrays.