Project description:The complete mitochondrial genome of plant pathogenic fungus, Fusarium equiseti, was sequenced. The circular molecule is 53,411?bp long with a GC content of 32.81%. It contains 22 protein-coding genes, 4 ribosomal RNA (rRNA), and 24 transfer RNA (tRNA) genes. Phylogenetic reconstructions confirmed that it has the closest relationship with Fusarium equiseti. The mitogenome analysis of Fusarium equiseti provides a molecular basis for further studies on molecular systematics and evolutionary dynamics.
Project description:The Fusarium incarnatum-equiseti species complex (FIESC) is shown to encompass 33 phylogenetic species, across a wide range of habitats/hosts around the world. Here, 77 pathogenic and endophytic FIESC strains collected from China were studied to investigate the phylogenetic relationships within FIESC, based on a polyphasic approach combining morphological characters, multi-locus phylogeny and distribution patterns. The importance of standardised cultural methods to the identification and classification of taxa in the FIESC is highlighted. Morphological features of macroconidia, including the shape, size and septum number, were considered as diagnostic characters within the FIESC. A multi-locus dataset encompassing the 5.8S nuclear ribosomal gene with the two flanking internal transcribed spacers (ITS), translation elongation factor (EF-1α), calmodulin (CAM), partial RNA polymerase largest subunit (RPB1) and partial RNA polymerase second largest subunit (RPB2), was generated to distinguish species within the FIESC. Nine novel species were identified and described. The RPB2 locus is demonstrated to be a primary barcode with high success rate in amplification, and to have the best species delimitation compared to the other four tested loci.
Project description:Morphology, phylogeny, and sexual stage of Fusarium caatingaense and Fusarium pernambucanum, new species of the Fusarium incarnatum-equiseti species complex associated with insects in Brazil