Project description:The mirid bug, Apolygus lucorum Meyer-Dür, has been an important pest of cotton crop in China, and is primarily controlled with insecticides, such as pyrethroids. To elucidate the potential resistant mechanisms of A. lucorum to lambda-cyhalothrin, a series of biological, biochemical, and molecular assays were conducted in the reference (AL-S) and lambda-cyhalothrin-resistant (AL-R) populations. Comparison of the molecular target of pyrethroid insecticides, voltage-gated sodium channel, revealed that there were no mutation sites in the resistant population, indicating target insensitivity is not responsible for increased resistance of AL-R to lambda-cyhalothrin. Furthermore, the synergism assays and the activities of detoxification enzymes were performed to determine detoxification mechanism conferring the lambda-cyhalothrin resistance. In the tested synergists, the piperonyl butoxide had the highest synergism ratio against lambda-cyhalothrin, which was up to five-fold in both populations. In addition, the result also showed that only cytochrome P450 had significantly higher O-deethylase activity with 7-ethoxycoumarin (1.78-fold) in AL-R population compared with AL-S population. Seven cytochrome P450 genes were found to be significantly overexpressed in the resistant AL-R population compared with AL-S population. Taken together, these results demonstrate that multiple over-transcribed cytochrome P450 genes would be involved in the development of lambda-cyhalothrin resistance in AL-R population.
Project description:The polyphagous mirid bug Apolygus lucorum (Heteroptera: Miridae) is a serious pest of agricultural crops in China, with more than 200 species of host plants including two very important crops, maize and soybean. Currently, prevention and control of A. lucorum rely mainly on chemical pesticides that cause environmental as well as health related problems. Plant-mediated RNAi has proven to offer great potential for pest control in the past decade. In this study, we screened and obtained seven candidate genes (Alucβ-actin, AlucV-ATPase-A/D/E, AlucEif5A, AlucEcR-A, AlucIAP) by injection-based RNAi which produced A. lucorum mortality rates of 46.01-82.32% at day 7 after injection. Among them, the plant-mediated RNAi of AlucV-ATPase-E was successfully introduced into transgenic maize and soybean, and the populations of A. lucorum were significantly decreased following feeding on the transgenic maize and soybean. These results are intended to provide helpful insight into the generation of bug-resistant plants through a plant-mediated RNAi strategy.