Project description:Expression analysis of ADRN cell line SH-SY5Y with doxycycline-inducible NOTCH3-IC was used to study transcriptional reprogramming to a MES state.
Project description:Expression analysis of xenograft tumors of ADRN cell line SH-SY5Y with doxycycline-inducible NOTCH3-IC was used to study transcriptional reprogramming to a MES state in vivo.
Project description:Expression analysis of ADRN cell line SH-SY5Y with transient- or permanent doxycycline-inducible NOTCH3-IC expression was used to study reversibility of transcriptional reprogramming.
Project description:Background: SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signaling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is not sufficiently understood. To shed new light on the mechanism, we comprehensively compared the gene expression profiles between SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which showed a different phenotype during RA-mediated differentiation. Results: SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF) for full differentiation. In combination with perturbation using a PI3K inhibitor, LY294002, we identified 386 genes and categorized them into two clusters dependent on the PI3K signaling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster was greatly reduced in SK-N-SH cells or partially impaired in SH-SY5Y-E cells in coincidence with a defect in the neuronal phenotype of these cell lines. Additional stimulation with BDNF induced a set of neural genes which were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in the differentiated SH-SY5Y-A cells. Conclusions: We identified the gene clusters controlled by PI3K- and TRKB-mediated signaling pathways during differentiation in two subtypes of SH-SY5Y cells. TRKB-mediated bypass pathway compensates for the impaired neural functions generated by defects in several signaling pathways including PI3K in SH-SY5Y-E cells. The expression profiling data are useful for further studies to elucidate the signal transduction-transcriptional network including PI3K and/or TRKB. Keywords: Cell type comparison, time course
Project description:Human SH-SY5Y neuroblastoma cells treated with paraquat, a neurotoxic herbicide which both catalyzes the formation of reactive oxygen species (ROS) and induces mitochondrial damage in animal models was profiled using Affimetrix Exon 1.0 ST GeneChips® Human SH-SY5Y neuroblastoma cells was compared with respect to Human SH-SY5Y neuroblastoma cells treated with Paraquat. Parqaut treatment was done as described by Maracchioni, A., Totaro, A., Angelini, D.F., Di Penta, A., Bernardi, G., Carri, M.T., and Achsel, T. (2007) J Neurochem 100, 142-153
Project description:Gene expression profiling reveals anti-inflammatory effects of BBEE on lipopolysaccharide (LPS)-induced Human neuronal SH-SY5Y cells We evaluated the pretreatment effect of BBEE on LPS-induced inflammation in SH-SY5Y cells. Pretreatment with BBEE could significantly attenuate nitric oxide (NO) production and LPS-induced release of inflammatory mediators in SH-SY5Ycells.
Project description:H3K27me3 ChIP-seq was performed on: 1) untreated SH-SY5Y human neuroblastoma cells (day 0) 2) vincristine-treated SH-SY5Y human neuroblastoma cells (7 days of treatment - day 7) 3) vincristine-treated SH-SY5Y human neuroblastoma cells (7 days of treatment + 7 days of recover - day 14)