Project description:We report the expression analysis of seed kernel in Camellia oleifera cultivars. In total 221 cultivars are sequenced by the Illumina sequencing experiments to obtain the gene expression profiles.
Project description:Self-inhibition of pollen tubes plays a key role in SI, but the underlying mechanism in Camellia oleifera is poorly understood. Collection of secreted proteins from Camellia oleifera pollen tubes and ovaries for high-throughput sequencing.
Project description:<p>The section <em>Oleifera</em> (Theaceae) has attracted attention for the high levels of unsaturated fatty acids found in its seeds. Here, we report the chromosome-scale genome of the sect. <em>Oleifera</em> using diploid wild <em>Camellia lanceoleosa</em> with a final size of 3.00 Gb and an N50 scaffold size of 186.43 Mb. Repetitive sequences accounted for 80.63% and were distributed unevenly across the genome. <em>Camellia lanceoleosa</em> underwent a whole-genome duplication event approximately 65 million years ago (65 Mya), prior to the divergence of <em>C</em>. <em>lanceoleosa</em> and <em>Camellia sinensis</em> (approx. 6-7 Mya). Syntenic comparisons of these two species elucidated the genomic rearrangement, appearing to be driven in part by the activity of transposable elements. The expanded and positively selected genes in <em>C</em>. <em>lanceoleosa</em> were significantly enriched in oil biosynthesis, and the expansion of homomeric <em>acetyl-coenzyme A carboxylase</em> (<em>ACCase</em>) genes and the seed-biased expression of genes encoding heteromeric ACCase, diacylglycerol acyltransferase, glyceraldehyde-3-phosphate dehydrogenase and stearoyl-ACP desaturase could be of primary importance for the high oil and oleic acid content found in <em>C. lanceoleosa</em>. Theanine and catechins were present in the leaves of <em>C</em>. <em>lanceoleosa</em>. However, caffeine can not be dectected in the leaves but was abundant in the seeds and roots. The functional and transcriptional divergence of genes encoding SAM-dependent <em>N</em>-methyltransferases may be associated with caffeine accumulation and distribution. Gene expression profiles, structural composition and chromosomal location suggest that the late-acting self-incompatibility of <em>C. lanceoleosa</em> is likely to have favoured a novel mechanism co-occurring with gametophytic self-incompatibility. This study provides valuable resources for quantitative and qualitative improvements and genome assembly of polyploid plants in sect. <em>Oleifera</em>.</p>