Project description:<p>In the last decade, non-invasive prenatal diagnosis (NIPD) has emerged as an effective procedure for early detection of inherited diseases during pregnancy. This technique is based on using cell-free DNA (cfDNA) and fetal cfDNA (cffDNA) in maternal blood, and hence, has minimal risk for the mother and fetus compared with invasive techniques. NIPD is used today for identifying chromosomal abnormalities (in some instances) and for single-gene disorders (SGDs) of paternal origin. However, for SGDs of maternal origin, sensitivity poses a challenge that limits the testing to one genetic disorder at a time. Here we present a Bayesian method for the NIPD of monogenic diseases that is independent of the mode of inheritance and parental origin. Furthermore, we show that accounting for differences in the fragment length distribution of fetal- and maternal-derived cfDNA results in increased accuracy. Our model is the first to predict inherited insertions-deletions (indels). The method described can serve as a general framework for the NIPD of SGDs; this will facilitate easy integration of further improvements. One such improvement that is presented in the current study is a machine learning model that corrects errors based on patterns found in previously processed data. Overall, we show that next generation sequencing (NGS) can be used for the NIPD of a wide range of monogenic diseases, simultaneously. We believe that our study will lead to the achievement of a comprehensive NIPD for monogenic diseases.</p> <p>(Reprinted from Bayesian-based noninvasive prenatal diagnosis of single-gene disorders, with permission from Genome Research) </p>
Project description:In the last decade, noninvasive prenatal diagnosis (NIPD) has emerged as an effective procedure for early detection of inherited diseases during pregnancy. This technique is based on using cell-free DNA (cfDNA) and fetal cfDNA (cffDNA) in maternal blood, and hence, has minimal risk for the mother and fetus compared with invasive techniques. NIPD is currently used for identifying chromosomal abnormalities (in some instances) and for single-gene disorders (SGDs) of paternal origin. However, for SGDs of maternal origin, sensitivity poses a challenge that limits the testing to one genetic disorder at a time. Here, we present a Bayesian method for the NIPD of monogenic diseases that is independent of the mode of inheritance and parental origin. Furthermore, we show that accounting for differences in the length distribution of fetal- and maternal-derived cfDNA fragments results in increased accuracy. Our model is the first to predict inherited insertions-deletions (indels). The method described can serve as a general framework for the NIPD of SGDs; this will facilitate easy integration of further improvements. One such improvement that is presented in the current study is a machine learning model that corrects errors based on patterns found in previously processed data. Overall, we show that next-generation sequencing (NGS) can be used for the NIPD of a wide range of monogenic diseases, simultaneously. We believe that our study will lead to the achievement of a comprehensive NIPD for monogenic diseases.
Project description:Background: How prenatal smoke exposure affects DNA methylation leading to atopic disorders remains to be addressed. Epigenetic biomarkers informative of prenatal smoke exposure and atopic disorders are wanting. Since most children suffering from atopic dermatitis (AD) continue to develop asthma later in life, we explored whether prenatal smoke exposure e induces DNA methylation and searched for predictive epigenetic biomarkers for smoke related atopic disorders. Methods: Methylation differences associated with smoke exposure were screened by Illumina methylation panel for children from the Taiwan birth panel study cohort initially. Information about development of atopic dermatitis (AD) and risk factors were collected. Cord blood cotinine levels were measured to represent prenatal smoke exposure. CpG loci that demonstrated a statistically significant difference in methylation were validated by methylation-dependent fragment separation (MDFS). Differential methylation in three genes (TSLP, GSTT1, and CYB5R3) was identified through the screen and their functions were investigated. Results: Among these, only thymic stromal lymphopoietin (TSLP) gene displayed significant difference in promoter methylation percentage after being validated by MDFS (p=0.029). TSLP gene was further investigated in a larger sample of 92 children from the cohort. Methylation status of the TSLP 5′-CpG island (CGI) was found to be significantly associated with prenatal smoke exposure (OR=3.59, 95%CI=1.49-8.64; cotinine level 0.10 ng/ml, sensitivity= 77%; specificity = 61%) and with AD (OR=4.77, 95%CI=1.47-15.53). The degree of TSLP 5′CGI methylation inversely correlated with TSLP protein expression levels (per unit: β=-6.69 ng/ml; 95% CIs, -12.80~-0.59; p=0.032). Conclusions: The effect of prenatal tobacco smoke exposure on the risk for AD may be mediated through DNA methylation. Cord blood methylated TSLP 5′CGI may be a potential epigenetic biomarker for environmentally-related atopic disorders. The buffy coat and plasma samples were separated and stored at −80°C. DNA (100 ng-500 ng) was extracted from cord white blood cells. Microarrays have been performed to investigate fourteen samples, which were classified as two groups according to cotinine exposure dosage (7 versus 7 : high exposure verses low exposure).
Project description:Noninvasive prenatal diagnosis currently used does not achieve desirable levels of sensitivity and specificity. Recently, fetal methylated DNA biomarkers in maternal whole blood have been explored for noninvasive prenatal detection. However, such efforts cover only chromosomal aneuploidy; fetal methylated DNA biomarkers for detecting single-gene disease remain to be discovered. To address this issue, we systematically screened significantly hypermethylated genes in fetal tissues compared with maternal blood for noninvasive prenatal diagnosis of various inherited diseases. First, Methylated-CpG island recovery assay combined with CpG island array was performed in four maternal peripheral bloods and their corresponding placental tissues. Subsequently, direct bisulfite sequencing and combined bisulfite restriction analysis (COBRA) were carried out to validate the reliability of methylation microarray analysis. As results, 310 significantly hypermethylated genes in fetal tissues were detected by microarray. Two of five randomly selected hypermethylated genes detected by microarray were confirmed to be hypermethylated in fetal tissue samples by direct bisulfite sequencing. All four randomly selected hypermethylated genes detected by microarray were confirmed to be hypermethylated in five independent amniotic fluid samples and five independent chorionic villus samples from 10 pregnant women by CORBA. In conclusions, We found a lot of hypermethylated genes and methylation sites in fetal tissues, some of which have great potential to be developed into molecular markers for noninvasive prenatal diagnosis of monogenic disorders. Further clinical study is warranted to confirm these findings. Paired experiments, placental tissues vs. maternal peripheral bloods. Biological replicates: 4 placental tissues and 4 correspoding maternal peripheral bloods.
Project description:Fetal DNA is present in the plasma of pregnant women. Massively parallel sequencing of maternal plasma DNA has been used to detect fetal trisomies 21, 18, 13 and selected sex chromosomal aneuploidies noninvasively. Case reports describing the detection of fetal microdeletions from maternal plasma using massively parallel sequencing have been reported. However, these previous reports were either polymorphism-dependent or used statistical analyses which were confined to one or a small number of selected parts of the genome. In this report, we reported a procedure for performing noninvasive prenatal karyotyping at 3 Mb resolution across the whole genome through the massively parallel sequencing of maternal plasma DNA. This method has been used to analyze the plasma obtained from 6 cases. In 5 cases, fetal microduplications or microdeletions have been detected successfully from maternal plasma. The two cases with fetal microduplications represented the first noninvasive prenatal detection of such changes from maternal plasma. In the remaining case, the plasma DNA sequencing result was consistent with the pregnant mother being a carrier of a microduplication. Simulation analyses were performed for determining the number of plasma DNA molecules that would need to be sequenced and aligned for enhancing the diagnostic resolution of noninvasive prenatal karyotyping to 2 Mb and 1 Mb. In conclusion, noninvasive prenatal molecular karyotyping from maternal plasma by massively parallel sequencing is feasible and would enhance the diagnostic spectrum of noninvasive prenatal testing.
Project description:Background: How prenatal smoke exposure affects DNA methylation leading to atopic disorders remains to be addressed. Epigenetic biomarkers informative of prenatal smoke exposure and atopic disorders are wanting. Since most children suffering from atopic dermatitis (AD) continue to develop asthma later in life, we explored whether prenatal smoke exposure e induces DNA methylation and searched for predictive epigenetic biomarkers for smoke related atopic disorders. Methods: Methylation differences associated with smoke exposure were screened by Illumina methylation panel for children from the Taiwan birth panel study cohort initially. Information about development of atopic dermatitis (AD) and risk factors were collected. Cord blood cotinine levels were measured to represent prenatal smoke exposure. CpG loci that demonstrated a statistically significant difference in methylation were validated by methylation-dependent fragment separation (MDFS). Differential methylation in three genes (TSLP, GSTT1, and CYB5R3) was identified through the screen and their functions were investigated. Results: Among these, only thymic stromal lymphopoietin (TSLP) gene displayed significant difference in promoter methylation percentage after being validated by MDFS (p=0.029). TSLP gene was further investigated in a larger sample of 92 children from the cohort. Methylation status of the TSLP 5′-CpG island (CGI) was found to be significantly associated with prenatal smoke exposure (OR=3.59, 95%CI=1.49-8.64; cotinine level 0.10 ng/ml, sensitivity= 77%; specificity = 61%) and with AD (OR=4.77, 95%CI=1.47-15.53). The degree of TSLP 5′CGI methylation inversely correlated with TSLP protein expression levels (per unit: β=-6.69 ng/ml; 95% CIs, -12.80~-0.59; p=0.032). Conclusions: The effect of prenatal tobacco smoke exposure on the risk for AD may be mediated through DNA methylation. Cord blood methylated TSLP 5′CGI may be a potential epigenetic biomarker for environmentally-related atopic disorders.
Project description:Noninvasive prenatal diagnosis currently used does not achieve desirable levels of sensitivity and specificity. Recently, fetal methylated DNA biomarkers in maternal whole blood have been explored for noninvasive prenatal detection. However, such efforts cover only chromosomal aneuploidy; fetal methylated DNA biomarkers for detecting single-gene disease remain to be discovered. To address this issue, we systematically screened significantly hypermethylated genes in fetal tissues compared with maternal blood for noninvasive prenatal diagnosis of various inherited diseases. First, Methylated-CpG island recovery assay combined with CpG island array was performed in four maternal peripheral bloods and their corresponding placental tissues. Subsequently, direct bisulfite sequencing and combined bisulfite restriction analysis (COBRA) were carried out to validate the reliability of methylation microarray analysis. As results, 310 significantly hypermethylated genes in fetal tissues were detected by microarray. Two of five randomly selected hypermethylated genes detected by microarray were confirmed to be hypermethylated in fetal tissue samples by direct bisulfite sequencing. All four randomly selected hypermethylated genes detected by microarray were confirmed to be hypermethylated in five independent amniotic fluid samples and five independent chorionic villus samples from 10 pregnant women by CORBA. In conclusions, We found a lot of hypermethylated genes and methylation sites in fetal tissues, some of which have great potential to be developed into molecular markers for noninvasive prenatal diagnosis of monogenic disorders. Further clinical study is warranted to confirm these findings.