Project description:Raw metabolomic Mass spectrometry data from thermal stress experiment on 3 corals from the Great Barrier Reef, Acropora hyacinthus , Porites lobata and Stylophora pistillata.
Project description:Despite their early evolutionary divergence, reef-building corals exhibit complex circadian responses to diurnal, lunar and annual changes in the conditions around them. Understanding circadian regulation in reef-building corals is, however, complicated by the presence of photosynthetic endosymbionts that have a profound physiochemical influence on the intracellular environment. How corals tune their animal-based clock machinery to respond to external cues while at the same time responding to internal physiological changes imposed by the symbiont is not clear. We explore this issue using microarray analysis to dissect genes governed directly by the circadian machinery from those responding indirectly as a consequence of changing internal oxygen tensions.
Project description:Despite their early evolutionary divergence, reef-building corals exhibit complex circadian responses to diurnal, lunar and annual changes in the conditions around them. Understanding circadian regulation in reef-building corals is, however, complicated by the presence of photosynthetic endosymbionts that have a profound physiochemical influence on the intracellular environment. How corals tune their animal-based clock machinery to respond to external cues while at the same time responding to internal physiological changes imposed by the symbiont is not clear. We explore this issue using microarray analysis to dissect genes governed directly by the circadian machinery from those responding indirectly as a consequence of changing internal oxygen tensions. Three coral colonies were sampled at 4 hr intervals during two consecutive days under an ambient light/dark (LD) cycle and under constant darkness (DD). In total 72 arrays were hybridized, as each array represented a sample from a treatment and a time point (n=3).
Project description:Aging is a multifactorial process that results in progressive loss of regenerative capacity and tissue function while simultaneously favoring the development of a large array of age-related diseases. Evidence suggests that the accumulation of senescent cells in tissue promotes both normal and pathological aging. Oxic stress is a key driver of cellular senescence. Because symbiotic long-lived reef corals experience daily hyperoxic and hypoxic transitions, we hypothesized that these long-lived animals have developed specific longevity strategies in response to light. We analyzed transcriptome variation in the reef coral Stylophora pistillata during the day–night cycle and revealed a signature of the FoxO longevity pathway. We confirmed this pathway by immunofluorescence using antibodies against coral FoxO to demonstrate its nuclear translocation. Among genes that were specifically up- or downregulated on exposure to light, human orthologs of two “light-up” genes (HEY1 and LONF3) exhibited anti-senescence properties in primary human fibroblasts. Therefore, these genes are interesting candidates for counteracting skin aging. We propose a large screen for other light-up genes and an investigation of the biological response of reef corals to light (e.g., metabolic switching) to elucidate these processes and identify effective interventions for promoting healthy aging in humans.
2020-11-24 | GSE153706 | GEO
Project description:Extreme mangrove corals of Woody isles, Great Barrier Reef
Project description:The Crown-of-Thorns starfish (COTS), Acanthaster planci, is a highly fecund predator of reef-building corals distributed throughout the Indo-Pacific. COTS population outbreaks cause substantial loss of coral cover, diminishing the integrity and resilience of the reef ecosystems thus increasing their susceptibility to climate change. We sequenced genomes of A. planci from the Great Barrier Reef, Australia (GBR) and Okinawa, Japan (OKI) to guide identification of species-specific peptide communication with potential applications in mitigation strategies. The genome-encoded proteins excreted and secreted into the surrounding seawater by COTS forming aggregations and by those escaping the predatory giant triton snail, Charonia tritonis, were identified LC-MS/MS.
Project description:This experiment assessed the natural gene expression variation present between colonies of the Indo-Pacific reef-building coral Acropora millepora, and additionally explored whether gene expression differed between two different intron haplotypes according to intron 4-500 in a carbonic anhydrase homolog. This study found no correspondence between host genotype and transcriptional state, but found significant intercolony variation, detecting 488 representing unique genes or 17% of the total genes analyzed. Such transcriptomic variation could be the basis upon which natural selection can act. Underlying variation could potentially allow reef corals to respond to different environments. Whether this source of variation and the genetic responses of corals and its symbionts will allow coral reefs to cope to the rapid pace of global change remains unknown.
Project description:Corals continuously adjust to short term variation in light availability on shallow reefs. Long-term light alterations can also occur due to natural and anthropogenic stressors, as well as management interventions such as coral transplantation. Although short term photophysiological responses are relatively well-understood in corals, little information is available regarding photoacclimation dynamics over weeks of altered light availability. We coupled photophysiology and metabolomic profiling to explore changes that accompany longer-term photoacclimation in a key Great Barrier Reef coral species (Acropora muricata). High (HL) and low light (LL) acclimated corals were collected from the reef and reciprocally exposed to high and low light ex situ. Rapid light curves using Pulse Amplitude Modulation (PAM) fluorometry revealed photophysiological acclimation of LL to HL and HL to LL shifted corals within 21 days. A subset of colonies sampled at 7 and 21 days for untargeted LC-MS and GC-MS metabolomic profiling revealed metabolic reorganization before acclimation was detected using PAM fluorometry. Metabolomic shifts were more pronounced for LL to HL treated corals than their HL to LL counterparts. Compounds driving metabolomic separation between HL-exposed and LL control colonies included amino acids, organic acids, fatty acids and sterols. Reduced glycerol and campesterol suggest decreased translocation of photosynthetic products from symbiont to host in LL to HL shifted corals, with concurrent increases in fatty acid abundance indicating reliance on stored lipids for energy. We discuss how these data provide novel insight into environmental regulation of metabolism and implications for management strategies that drive rapid changes in light availability.