Project description:Tissue regeneration is associated with complex changes in gene expression and post-translational modifications of proteins, including transcription factors and histones that comprise chromatin. We tested 173 compounds designed to target epigenetic mechanisms in an axolotl (Ambystoma mexicanum) embryo tail regeneration assay. A relatively large number of compounds (N = 31) reproducibly inhibited tail regeneration, including multiple histone deacetylase inhibitors (HDACi). In particular, romidepsin potently inhibited tail regeneration when embryos were treated continuously for 7 days. Additional experiments revealed that romidepsin acts within a very narrow, post-injury window. Romidepsin treatment for only 1 minute post-amputation inhibited regeneration through the first 7 days, however after this time, regeneration commenced with variable outgrowth of tailfin tissue and abnormal patterning. Microarray analysis showed that romidepsin altered early, transcriptional responses at 3 and 6-hour post-amputation, especially targeting genes that function in the regulation of transcription, cell differentiation, cell proliferation, pattern specification, and tissue morphogenesis. Our results show that HDAC activity is required at the time of tail amputation to regulate the initial transcriptional response to injury and regeneration.
Project description:The Mexican axolotl provides a powerful model to investigate mechanisms of tissue regeneration. A recent chemical screen found that HDAC inhibitor romidepsin, administered for only 1-minute post amputation (1 MPA), blocks axolotl tail regeneration. Here, we tested the potential for cobalt chloride (CoCl2), a chemical stabilizer of HIF1a and inducer of hypoxia, to rescue romidepsin-inhibition of tail regeneration. Tail regeneration was partially rescued when embryos with amputated tails were co-treated with romidepsin and CoCl2. However, extending the CoCl2 dosage window either inhibited regeneration (CoCl2:0-30 MPA) or was lethal (CoCl2:0-24 hours post amputation; HPA). CoCl2:0-30 MPA caused tissue damage, tissue loss, and cell death at the distal tail tip, and blocked regeneration. In contrast, CoCl2 treatment of non-amputated embryos or CoCl2:60-90 MPA treatment of amputated embryos did not affect wound healing or inhibit tail regeneration. To further investigate the contrasting effects of CoCl2, microarray analysis was performed to identify differentially expressed genes at 3 HPA. CoCl2-romidepsin:1 MPA treatment significantly increased the expression of transcription factors associated with appendage regeneration, while CoCl2:0-30 MPA significantly increased expression of hemoglobin and platelet-specific transcripts, consistent with hemorrhage and an impaired hemostatic response. Also, CoCl2:0-30 MPA significantly increased expression of hypoxia inducible genes, including genes that encode Hif1a interacting proteins and heat shock proteins (HSP); in contrast, genes encoding TGFB signaling components were significantly downregulated. Using additional chemical inhibitors of tail regeneration, we identified transcriptional responses associated with HSP90 activity and TGFB signaling. Notably, geldanamcin decreased transcription of matrix metalloproteinases and sustained muscle-specific gene expression, suggesting a role for HSP90 in regulating extracellular matrix remodeling and muscle dedifferentiation. Our study shows the power of using chemical tools to precisely identify temporal windows within which critical biological processes are enacted during tissue regeneration.
Project description:The Mexican axolotl (Ambystoma mexicanum) is one member of a select group of vertebrate animals that has retained the amazing ability to regenerate multiple body parts. In addition to being an important model system for regeneration, the axolotl is also a leading model system for developmental biologists. Many genes used in development have been identified to be reused again during regeneration, however how this molecular circuitry is controlled during regeneration is unknown. In recent years microRNAs have been identified as key regulators of gene expression during development, in many diseases and also in regeneration. Here we have used deep sequencing combined with qRT-PCR to identify microRNAs that are involved in regulating regeneration in axolotl. This approach has enabled us to identify well known families of microRNAs and in addition to identify putative novel microRNAs that differentially regulated in the regenerating tissue. These findings suggest that microRNAs may play key roles in managing the spatial and temporal expression of genes important for ensuring that the correct tissues are regenerated. small RNA Sequencing (2 samples) in Ambystoma Mexicanum
Project description:Tissue regeneration is associated with complex changes in gene expression and post-translational modifications of proteins, including transcription factors and histones that comprise chromatin. We tested 172 compounds designed to target epigenetic mechanisms in an axolotl (Ambystoma mexicanum) embryo tail regeneration assay. A relatively large number of compounds (N = 55) inhibited tail regeneration, including 18 histone deacetylase inhibitors (HDACi). In particular, romidepsin, an FDA-approved anticancer drug, potently inhibited tail regeneration when embryos were treated continuously for 7 days. Additional experiments revealed that romidepsin acted within a very narrow, post-injury window. Romidepsin treatment for only 1-minute post amputation inhibited regeneration through the first 7 days, however after this time, regeneration commenced with variable outgrowth of tailfin tissue and abnormal patterning. Microarray analysis showed that romidepsin altered early, transcriptional responses at 3 and 6-hour post-amputation, especially targeting genes that are implicated in tumor cell death, as well as genes that function in the regulation of transcription, cell differentiation, cell proliferation, pattern specification, and tissue morphogenesis. Our results show that HDAC activity is required at the time of tail amputation to regulate the initial transcriptional response to injury and regeneration.
Project description:The Mexican axolotl (Ambystoma mexicanum) is one member of a select group of vertebrate animals that has retained the amazing ability to regenerate multiple body parts. In addition to being an important model system for regeneration, the axolotl is also a leading model system for developmental biologists. Many genes used in development have been identified to be reused again during regeneration, however how this molecular circuitry is controlled during regeneration is unknown. In recent years microRNAs have been identified as key regulators of gene expression during development, in many diseases and also in regeneration. Here we have used deep sequencing combined with qRT-PCR to identify microRNAs that are involved in regulating regeneration in axolotl. This approach has enabled us to identify well known families of microRNAs and in addition to identify putative novel microRNAs that differentially regulated in the regenerating tissue. These findings suggest that microRNAs may play key roles in managing the spatial and temporal expression of genes important for ensuring that the correct tissues are regenerated.
Project description:New patterns of gene expression are enacted and regulated during tissue regeneration. Histone deacetylases (HDACs) regulate gene expression by removing acetylated lysine residues from histones and proteins that function directly or indirectly in transcriptional regulation. Previously we showed that romidepsin, an FDA-approved HDAC inhibitor, potently blocks axolotl embryo tail regeneration by altering initial transcriptional responses to injury. Here, we report on the concentration-dependent effect of romidepsin on transcription and regeneration outcome, introducing an experimental and conceptual framework for investigating small molecule mechanisms of action. A range of romidepsin concentrations (0-10 μM) were administered from 0 to 6 or 0 to 12 h post amputation (HPA) and distal tail tip tissue was collected for gene expression analysis. Above a threshold concentration, romidepsin potently inhibited regeneration. Sigmoidal and biphasic transcription response curve modeling identified genes with inflection points aligning to the threshold concentration defining regenerative failure verses success. Regeneration inhibitory concentrations of romidepsin increased and decreased the expression of key genes. Genes that associate with oxidative stress, negative regulation of cell signaling, negative regulation of cell cycle progression, and cellular differentiation were increased, while genes that are typically up-regulated during appendage regeneration were decreased, including genes expressed by fibroblast-like progenitor cells. Using single-nuclei RNA-Seq at 6 HPA, we found that key genes were altered by romidepin in the same direction across multiple cell types. Our results implicate HDAC activity as a transcriptional mechanism that operates across cell types to regulate the alternative expression of genes that associate with regenerative success versus failure outcomes.
Project description:Previous studies of appendage regeneration in the axolotl have shown that multiple genetic programs are modulated through regulatory factors. MicroRNAs are short highly conserved non-coding genes that suppress expression of target genes and thereby control multiple genetic programs. Given their important regulatory roles and evolutionary conservation, we hypothesize that microRNAs define a conserved genetic regulatory circuit important for appendage regeneration. We characterized microRNA expression during Axolotl forelimb regeneration using small RNA sequencing. The same samples were assayed for mRNA expression using mRNA sequencing. Small RNA and mRNA gene expression profiling during 0, 3, 6 and 14 days post amputation.