Project description:Tfh cells can help B cells to produce high-affinity antibodies. To date, no study has examined the status or the biological significance of circulating TFH cells in the treatment response of patients with CHB to standard PEG-IFN-α therapy To explore the molecular mechanisms underlying the differential biological activities of Tfh cells from CHB patients with distinct therapeutic response to PEG-IFN-α
Project description:CD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation. Analysis of in vivo polyclonal GC Tfh vs Tfh vs Non-Tfh eight days after LCMV viral infection. Analysis of in vivo follicular helper CD4 T cells (CXCR5high GL7low), versus germinal center follicular helper CD4 T cells (CXCR5hi GL7hi), versus non-follicular helper CD4 T cells (CXCR5low) eight days after viral infection.
Project description:Follicular helper T (Tfh) cells access the B cell follicle to promote antibody responses, and are particularly important for germinal center (GC) reactions. However, the molecular mechanisms of how Tfh cells are physically associated with GCs are incompletely understood. Here we report that the sphingosine-1-phosphate receptor 2 (S1PR2) gene is highly expressed in a subpopulation of Tfh cells that localizes in GCs. S1PR2-deficient Tfh cells exhibited reduced accumulation in GCs due to their impaired retention. T cells deficient in both S1PR2 and CXCR5 were ineffective in supporting GC responses compared to T cells deficient only in CXCR5. These results suggest that S1PR2 and CXCR5 cooperatively regulate localization of Tfh cells in GCs to support GC responses. Venus-high Tfh, Venus-low Tfh, PD1-intermediate Th, PD1-low Th and naïve CD4+ T cells were sorted on FACSAria from immunized S1pr2V/+ mice or control mice for RNA extraction and hybridization on Affimetrix microarrays.
Project description:CD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation.
Project description:Follicular helper T (Tfh) cells access the B cell follicle to promote antibody responses, and are particularly important for germinal center (GC) reactions. However, the molecular mechanisms of how Tfh cells are physically associated with GCs are incompletely understood. Here we report that the sphingosine-1-phosphate receptor 2 (S1PR2) gene is highly expressed in a subpopulation of Tfh cells that localizes in GCs. S1PR2-deficient Tfh cells exhibited reduced accumulation in GCs due to their impaired retention. T cells deficient in both S1PR2 and CXCR5 were ineffective in supporting GC responses compared to T cells deficient only in CXCR5. These results suggest that S1PR2 and CXCR5 cooperatively regulate localization of Tfh cells in GCs to support GC responses.
Project description:CD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation. Analysis of in vivo antigen-specific (LCMV-specific, SMARTA TCR transgenic) WT and Sh2d1a-/- follicular helper CD4 T cells (CXCR5high),versus non-follicular helper CD4 T cells (CXCR5low), eight days after viral infection.
Project description:We found that a number of Tfh cells downmodulated BCL6 protein after their development, and we sought to compare the gene expression between BCL6-hi Tfh cells and BCL6-low Tfh cells.
Project description:We found that a number of Tfh cells downmodulated BCL6 protein after their development, and we sought to compare the gene expression between BCL6-hi Tfh cells and BCL6-low Tfh cells. CD4+ T cells were sorted from immunized and non-immunized mice for RNA extraction and hybridization on Affymetrix microarrays. Bcl6yfp/+ OT-II cells were transferred to congenic recipient mice, and immunized with NP-OVA in CFA subcutaneously. Seven or ten days after immunization, cells were collected from draining lymph nodes, and sorted on FACSAria by the expression of CXCR5, PD-1 and BCL6-YFP. Naive CD4+ T cells were CD4+ CD44lo CD62Lhi cells from unimmunized mice.
Project description:Approximately 50% of patients with chronic hepatitis C (CHC) have a sustained virologic response (SVR) to treatment with pegylated interferon (pegINF)-M-NM-1 and ribavirin. Non-response to treatment is associated with constitutively increased expression of IFN-stimulated genes (ISGs) in the liver. Treatment of patients with acute hepatitis C (AHC) is more effective, with SVR rates >90%. We investigated mechanisms of the different responses of patients with CHC and AHC to pegIFN-M-NM-1 therapy. We analyzed IFN signaling and ISG expression in liver samples from patients with acute hepatitis C (AHC), patients with chronic hepatitis (CHC), and individuals without hepatitis C (controls) using microarray, immunohistochemical, and protein analyses. Findings were compared with those from primary human hepatocytes stimulated with IFN-M-NM-1 or IFN-M-NM-3, as reference sets. Expression levels of 100s of genes, primarily those regulated by IFN-M-NM-3, were altered in liver samples from patients with AHC compared with controls. Expression of IFN-M-NM-3M-bM-^@M-^Sstimulated genes was induced in liver samples from patients with AHC, whereas expression of IFN-M-NM-1M-bM-^@M-^Sstimulated genes was induced in samples from patients with CHC. In an expression analysis of negative regulators of IFN-M-NM-1 signaling, we did not observe differences in expression of SOCS1 or SOCS3 between liver samples from patients with AHC and those with CHC. However, USP18 (another negative regulator of IFN-M-NM-1 signaling), was upregulated in liver samples of patients with CHC that did not respond to therapy, but not in AHC. In conclusion, differences in expression of ISGs might account for the greater response of patients with AHC, compared to those with CHC, to treatment with pegINF-M-NM-1 and ribavirin. Specifically, USP18 is upregulated in liver samples of patients with CHC that do not respond to therapy, but not in patients with AHC. (Interferon-M-NM-3 Stimulated Genes, but not USP18, are Expressed in Livers of Patients with Acute Hepatitis C; Dill MT, Makowska Z et al, Gastroenterology 2012 (in press)) Liver biopsy samples from 6 patients with acute hepatitis C virus infection were analyzed CHC data and controls previously submitted as GSE11190