Project description:Preterm birth, defined as birth <37 weeks of gestation, is a leading cause of infant morbidity and mortality. In the United States, approximately 12% of all births are preterm.1 Despite decades of research, there has been little progress in developing effective interventions to prevent preterm birth. In fact, the rate of preterm birth has increased slightly over the last several decades.2 The ultimate goal of the Genomic and Proteomic Network for Preterm Birth Research (GPN-PBR) is to identify possible biomarkers that could predict the susceptibility to spontaneous preterm birth (SPTB) as well as to shed light on the molecular mechanisms involved in its etiologies. Understanding those mechanisms will help us predict SPTB and may facilitate the introduction of more effective prevention and treatment strategies.
Project description:Peripheral whole blood transcriptome profiles of pregnant women with normal pregnancy and spontaneous preterm birth from 10-18 weeks of gestational age enrolled in the Vitamin D Antenatal Asthma Reduction Trial (VDAART).
Project description:Placental insufficiency is implicated in spontaneous preterm birth (SPTB). We performed RNA-seq study in male and female placentas from women (African American, self-identified) with SPTB (< 36 weeks gestation) compared to normal pregnancies (≥ 38 weeks gestation) to assess the alterations in gene expression profiles.
Project description:The pathogenesis of spontaneous preterm birth (PTB) is largely unknown. We conducted RNA-seq transcriptomic analysis, qRT-PCR and ELISA on fresh placental villous tissue from 20 spontaneous preterm and 20 spontaneous term deliveries, to identify genes and signalling pathways involved in the pathogenesis of PTB. Our differential gene expression, gene ontology and pathway analysis revealed several dysregulated genes, including OCLN, OPTN, KRT7, WNT7A, RSPO4, BAMBI, NFATC4, SLC6A13, SLC6A17, SLC26A8 and KLF8, associated with altered trophoblast functions. We identified dysregulated Wnt, oxytocin and cellular senescence signalling pathways in preterm placentas, where augmented Wnt signalling could play a pivotal role in the pathogenesis of PTB due to its diverse biological functions. We provide fresh molecular insight into the pathogenesis of spontaneous PTB, which may drive further studies to develop new predictive biomarkers and therapeutics.
Project description:Using RNA-sequencing (RNA-Seq and miRNA-Seq), we analyzed paired villous trophoblast and decidual basalis transcriptomes of 15 women pregnant with singleton gestations grouped as follows: (1) spontaneous preterm birth (PTB) in the setting of amniocentesis-proven intra-amniotic infection (IAI) and histological chorioamnionits (n=5; GA median [range]: 26 [25-31] weeks); (2) spontaneous idiopathic preterm birth (iPTB, n=5, GA: 32 [30-33] weeks); and (3) term normal pregnancy, that delivered a heathy infant by cesarean section in the absence of labor (n=5; GA: 39 [38-39] weeks). The primary goal of this study was to identify differentially expressed transcripts and illuminate molecular mechanisms distinguishing IAI-associated PTBs from spontaneous PTBs in the absence of IAI. We further compared iPTB specimens to term specimens to determine genes differentially regulated with advancing gestational age and following spontaneous PTB without IAI. Finally, we determined transcripts selectively expressed in either the villous trophoblast or decidua basalis in each clinical context. Raw data for this series are not available because consent forms do not allow for public access to raw data.
Project description:Using RNA-sequencing (RNA-Seq and miRNA-Seq), we analyzed paired villous trophoblast and decidual basalis transcriptomes of 15 women pregnant with singleton gestations grouped as follows: (1) spontaneous preterm birth (PTB) in the setting of amniocentesis-proven intra-amniotic infection (IAI) and histological chorioamnionits (n=5; GA median [range]: 26 [25-31] weeks); (2) spontaneous idiopathic preterm birth (iPTB, n=5, GA: 32 [30-33] weeks); and (3) term normal pregnancy, that delivered a heathy infant by cesarean section in the absence of labor (n=5; GA: 39 [38-39] weeks). The primary goal of this study was to identify differentially expressed transcripts and illuminate molecular mechanisms distinguishing IAI-associated PTBs from spontaneous PTBs in the absence of IAI. We further compared iPTB specimens to term specimens to determine genes differentially regulated with advancing gestational age and following spontaneous PTB without IAI. Finally, we determined transcripts selectively expressed in either the villous trophoblast or decidua basalis in each clinical context. Raw data for this study are not available because consent forms do not allow for public access to raw data.
Project description:Using RNA-sequencing (RNA-Seq and miRNA-Seq), we analyzed paired villous trophoblast and decidual basalis transcriptomes of 15 women pregnant with singleton gestations grouped as follows: (1) spontaneous preterm birth (PTB) in the setting of amniocentesis-proven intra-amniotic infection (IAI) and histological chorioamnionits (n=5; GA median [range]: 26 [25-31] weeks); (2) spontaneous idiopathic preterm birth (iPTB, n=5, GA: 32 [30-33] weeks); and (3) term normal pregnancy, that delivered a heathy infant by cesarean section in the absence of labor (n=5; GA: 39 [38-39] weeks).