Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. RNA-Seq analysis of the human gut microbiome during consumption of a plant- or animal-based diet.
Project description:The human gut is colonized by trillions of microorganisms that influence human health and disease through the metabolism of xenobiotics, including therapeutic drugs and antibiotics. The diversity and metabolic potential of the human gut microbiome have been extensively characterized, but it remains unclear which microorganisms are active and which perturbations can influence this activity. Here, we use flow cytometry, 16S rRNA gene sequencing, and metatranscriptomics to demonstrate that the human gut contains distinctive subsets of active and damaged microorganisms, primarily composed of Firmicutes, which display marked temporal variation. Short-term exposure to a panel of xenobiotics resulted in significant changes in the physiology and gene expression of this active microbiome. Xenobiotic-responsive genes were found across multiple bacterial phyla, encoding novel candidate proteins for antibiotic resistance, drug metabolism, and stress response. These results demonstrate the power of moving beyond DNA-based measurements of microbial communities to better understand their physiology and metabolism. RNA-Seq analysis of the human gut microbiome during exposure to antibiotics and therapeutic drugs.
Project description:Hundreds of microbial species were found to be transcriptionally active in the human gut microbiome based on the expression profiling of ca. 680.000 microbial genes
Project description:Hundreds of microbial species were found to be transcriptionally active in the human gut microbiome based on the expression profiling of ca. 680.000 microbial genes As a part of the MetaHIT cohort 233 human stool samples were transcriptionally profiled using a custom made microarray that included probes for most prevalent microbial genes in the cohort as established by whole-genome sequencing of the same samples
Project description:The trillions of microorganisms in the human gastrointestinal tract are an underexplored aspect of pharmacology. Despite numerous examples of microbial effects on drug efficacy and toxicity, there is often an incomplete understanding of the underlying mechanisms. Here, we dissect the inactivation of the commonly prescribed cardiac glycoside, digoxin, by Eggerthella lenta. Whole genome transcriptional profiling, comparative genomics, and culture-based assays revealed a cytochrome-encoding operon up-regulated by digoxin, absent in non-metabolizing E. lenta strains, and predictive of the efficiency of digoxin inactivation by the human gut microbiome. Digoxin inactivation was further enhanced by microbial interactions and inhibited by arginine. Pharmacokinetic studies using gnotobiotic mice revealed that increasing dietary protein reduces the in vivo metabolism of digoxin by E. lenta, with significant changes to drug concentration in the urine and serum. These results emphasize the importance of viewing pharmacology from the perspective of both our human and microbial genomes. RNA-Seq analysis of Eggerthella lenta cultured with or without digoxin.
Project description:The human stool samples were collected and processed for in vitro culturing under anaerobic condition using rapidAIM assay with or without SAHA, an lysine deacetylase inhibitor, for evaluating the effects of SAHA on human gut microbiome. Metaproteomics were used to analyze the microbiome composition and functions.
Project description:The gut microbiome plays an important role in normal immune function and has been implicated in several autoimmune disorders. Here we use high-throughput 16S rRNA sequencing to investigate the gut microbiome in subjects with multiple sclerosis (MS, n=61) and healthy controls (n=43). Alterations in the gut microbiome in MS include increases in the genera Methanobrevibacter and Akkermansia and decreases in Butyricimonas, and correlate with variations in the expression of genes involved in dendritic cell maturation, interferon signaling and NF-kB signaling pathways in circulating T cells and monocytes. Patients on disease-modifying treatment show increased abundances of the genera Prevotella and Sutterella, and decreased Sarcina, compared to untreated patients. MS patients of a second cohort show elevated breath methane compared to controls, consistent with our observation of increased gut Methanobrevibacter in MS in the first cohort. Further study is required to assess whether the observed alterations in the gut microbiome play a role in, or are a consequence of, MS pathogenesis.
Project description:Morphine and its pharmacological derivatives are the most prescribed analgesics for moderate to severe pain management. However, chronic use of morphine reduces pathogen clearance and induces bacterial translocation across the gut barrier. The enteric microbiome has been shown to play a critical role in the preservation of the mucosal barrier function and metabolic homeostasis. Here, we show for the first time, using bacterial 16s rDNA sequencing, that chronic morphine treatment significantly alters the gut microbial composition and induces preferential expansion of the gram-positive pathogenic and reduction of bile-deconjugating bacterial strains. A significant reduction in both primary and secondary bile acid levels was seen in the gut, but not in the liver with morphine treatment. Morphine induced microbial dysbiosis and gut barrier disruption was rescued by transplanting placebo-treated microbiota into morphine-treated animals, indicating that microbiome modulation could be exploited as a therapeutic strategy for patients using morphine for pain management. In this study, we establish a link between the two phenomena, namely gut barrier compromise and dysregulated bile acid metabolism. We show for the first time that morphine fosters significant gut microbial dysbiosis and disrupts cholesterol/bile acid metabolism. Changes in the gut microbial composition is strongly correlated to disruption in host inflammatory homeostasis13,14 and in many diseases (e.g. cancer/HIV infection), persistent inflammation is known to aid and promote the progression of the primary morbidity. We show here that chronic morphine, gut microbial dysbiosis, disruption of cholesterol/bile acid metabolism and gut inflammation; have a linear correlation. This opens up the prospect of devising minimally invasive adjunct treatment strategies involving microbiome and bile acid modulation and thus bringing down morphine-mediated inflammation in the host.
Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.