Project description:The diversity and environmental distribution of the nosZ gene, which encodes the enzyme responsible for the consumption of nitrous oxide, was investigated in marine and terrestrial environments using a functional gene microarray. The microbial communities represented by the nosZ gene probes showed strong biogeographical separation, with communities from surface ocean waters and agricultural soils significantly different from each other and from those in oceanic oxygen minimum zones. Atypical nosZ genes, usually associated with incomplete denitrification pathways, were detected in all the environments, including surface ocean waters. The abundance of nosZ genes, as estimated by quantitative PCR, was highest in the agricultural soils and lowest in surface ocean waters.
Project description:Oral administration of an extract of compost fermented with thermophiles to pigs reduces the incidence of stillbirth and promotes piglet growth. However, the mechanism by which compost extract modulates the physiological conditions of the animals remains largely unknown. Here, we investigate the effects of compost extract on the gene expression in the intestine of the rat as a mammalian model. Gene expression analyses of the intestine indicated that several immune-related genes were upregulated following compost exposure. Thus, thermophile-fermented compost can contain microbes and/or substances that activate the gut mucosal immune response in the rat.
Project description:Composts are the products obtained after the aerobic degradation of different types of organic matter wastes and can be used as substrates or substrate/soil amendments. There are a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost as growing medium compared to standard substrates. The purpose of this study was to unravel the gene expression alteration produced by the compost to gain knowledge about the mechanisms involved in the compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis compared to the standard substrate perlite. Microarray analyses revealed that 178 genes were differently expressed with a fold change cut off of 1 from which 155 were upregulated and 23 were down regulated in compost-grown compared to perlite-grown plants. Functional enrichment study of up regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched terms as well as immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA dependent/independent abiotic stress responses.
Project description:Composts are the products obtained after the aerobic degradation of different types of organic matter wastes and can be used as substrates or substrate/soil amendments. There are a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost as growing medium compared to standard substrates. The purpose of this study was to unravel the gene expression alteration produced by the compost to gain knowledge about the mechanisms involved in the compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis compared to the standard substrate perlite. Microarray analyses revealed that 178 genes were differently expressed with a fold change cut off of 1 from which 155 were upregulated and 23 were down regulated in compost-grown compared to perlite-grown plants. Functional enrichment study of up regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched terms as well as immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA dependent/independent abiotic stress responses. Global gene expression of plants grown in compost (3 biological replicates) versus plants grown in perlite (2 biological replicates) was studied.
Project description:Rhizobia living as microsymbionts inside nodules have stable access to carbon substrates, but also have to survive as free-living bacteria in soil where they are starved for carbon and energy most of the time. Many rhizobia can denitrify, thus switch to anaerobic respiration under low O2 tension using N-oxides as electron acceptors. The cellular machinery regulating this transition is relatively well-known from studies under optimal laboratory conditions, while little is known about this regulation in starved organisms. It is, for example, not known if the strong preference for N2O- over NO3--reduction in bradyrhizobia is retained under carbon limitation. Here we show that starved cultures of a Bradyrhizobium strain with respiration rates 1-18% of well-fed cultures, reduced all available N2O before touching provided NO3-. These organisms, which carry out complete denitrification, have the periplasmic nitrate reductase NapA but lack the membrane-bound nitrate reductase NarG. Proteomics showed similar levels of NapA and NosZ (N2O reductase), excluding that the lack of NO3- reduction was due to low NapA abundance. Instead, this points to a metabolic-level phenomenon where the bc1 complex, which channels electrons to NosZ via cytochromes, is a much stronger competitor for electrons from the quinol pool than the NapC enzyme, which provides electrons to NapA via NapB. The results contrast the general notion that NosZ activity diminishes under carbon limitation and suggest that bradyrhizobia carrying NosZ can act as strong sinks for N2O under natural conditions, implying that this criterion should be considered in the development of biofertilizers.
Project description:Oral administration of an extract of compost fermented with thermophiles to pigs reduces the incidence of stillbirth and promotes piglet growth. However, the mechanism by which compost extract modulates the physiological conditions of the animals remains largely unknown. Here, we investigate the effects of compost extract on the gene expression in the intestine of the rat as a mammalian model. Gene expression analyses of the intestine indicated that several immune-related genes were upregulated following compost exposure. Thus, thermophile-fermented compost can contain microbes and/or substances that activate the gut mucosal immune response in the rat. In Male Wistar rats aged 3 weeks, tap water was supplemented with 1.0% (v/v) compost extract for the experimental rats, whereas water only was given to the control rats. The rats received water ad libitum for 12 weeks. Fresh gut samples were collected from individual rats at the end of the feeding test and stored at -80°C. The intestine were separated from the gut and used as samples for the isolation of total RNA. otal RNA was then subjected to microarray experiments using the Whole Rat Genome (4x44k) Oligo Microarray (Agilent Technologies, Inc.)
Project description:To investigate the effect of different levels of compost treatment on root gene expression of Atriplex lentiformis, we set up a greenhouse experiment with three treatments of 10% (TC10), 15 (TC15), and 20% (TC20) compost amended, metalliferrous mine tailings. Plants were harvested at ~11 weeks and root samples were flash frozen in liquid nitrogen for RNA-seq analysis. We then performed gene expression profiling analysis using data obtained from RNA-seq of 9 root samples from 3 different treatments.
Project description:The white button mushroom Agaricus bisporus is the most widely produced edible fungus with a great economical value. Its commercial cultivation process is often performed on wheat straw and animal manure based compost that mainly contains lignocellulosic material as a source of carbon and nutrients for the mushroom production. As a large portion of compost carbohydrates are left unused in the current mushroom cultivation process, the aim of this work was to study wild-type A. bisporus strains for their potential to convert the components that are poorly utilized by the commercial strain A15. Growth profiling suggested different abilities for several A. bisporus strains to use plant biomass derived polysaccharides, as well as to transport and metabolize the corresponding monomeric sugars. Six wild-type isolates with diverse growth profiles were compared for mushroom production to A15 strain in semi-commercial cultivation conditions. Transcriptome and proteome analyses of the three most interesting wild-type strains and A15 indicated that the unrelated A. bisporus strains degrade and convert plant biomass polymers in a highly similar manner. This was also supported by the chemical content of the compost during the mushroom production process. Our study therefore reveals a highly conserved physiology for unrelated strains of this species during growth in compost.