Project description:Liver-specific depletion of both of the cytosolic NADPH-dependent disulfide reductases, TrxR1 and Gsr, was shown to result in increased activation of Nrf2 as compared to elimination of either of these enzymes alone. Activation of transcription factor Nrf2 and its downstream cytoprotective target genes by oxidative and electrophilic insults can protect cells from potentially carcinogenic damage. However, many cancers have an activated Nrf2 response, which can protect cancer cells from oxidative stress radiation. Gene expression profiles in TrxR1/Gsr-null livers provide a basis for understanding the complex responses to chronically elevated oxidative stress and damage.
Project description:Oltipraz is an activator of Nrf2 but is also an activator of other pathways including those mediated by constitutive activated receptor (CAR). To identify genes regulated by oltipraz that were Nrf2-dependent, we compared gene expression after exposure in wild-type and Nrf2-null mice. Wild-type or Nrf2-null mice were treated each day for 4 days with 75 mg/kg/day/day oltipraz in corn oil or corn oil alone. There were 4 biological replicates used for each of the 4 genotype-treatment groups. Gene expression in the livers of the mice was evaluated using Affymetrix mouse exon arrays (MoEx-1_0-st-v1).
Project description:Autophagy deficiency caused by conditional knockout of Atg7 results in severe hepatitis accompanied by abundant accumulation of p62. p62 stablizes Nrf2 by disrupting the association between Keap1 and Nrf2. To understand the pathogenesis of hepatitis under the autophagy deficiency, we examined gene expression profiles of livers from Atg7-null, Nrf2-null and Atg7-Nrf2 double mutant mice.
Project description:Autophagy deficiency caused by conditional knockout of Atg7 results in severe hepatitis accompanied by abundant accumulation of p62. p62 stablizes Nrf2 by disrupting the association between Keap1 and Nrf2. To understand the pathogenesis of hepatitis under the autophagy deficiency, we examined gene expression profiles of livers from Atg7-null, Nrf2-null and Atg7-Nrf2 double mutant mice. Eight week old Atg7F/F:Mx1-Cre mice and Atg7F/F:Mx1-Cre:Nrf2-/- together with control mice were injected with pIpC. At 4 weeks after pIpC injection, total RNAs were purified from each mouse liver.
Project description:Oltipraz is an activator of Nrf2 but is also an activator of other pathways including those mediated by constitutive activated receptor (CAR). To identify genes regulated by oltipraz that were Nrf2-dependent, we compared gene expression after exposure in wild-type and Nrf2-null mice.
Project description:Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that induces a battery of cytoprotective genes in response to oxidative/electrophilic stress. Kelch-like ECH associating protein 1 (Keap1) sequesters Nrf2 in the cytosol. The purpose of this study was to investigate the role of Nrf2 in regulating the mRNA of genes encoding drug metabolizing enzymes and xenobiotic transporters. Microarray analysis was performed in livers of Nrf2-null, wild-type, Keap1-knockdown mice with increased Nrf2 activation, and Keap1-hepatocyte knockout mice with maximum Nrf2 activation. In general, Nrf2 did not have a marked effect on uptake transporters, but the mRNAs of organic anion transporting polypeptide 1a1, sodium taurocholate cotransporting polypeptide, and organic anion transporter 2 were decreased with Nrf2 activation. The effect of Nrf2 on cytochrome P450 (Cyp) genes was minimal, with only Cyp2a5, Cyp2c50, Cyp2c54, and Cyp2g1 increased, and Cyp2u1 decreased with enhanced Nrf2 activation. However, Nrf2 increased mRNA of many other phase-I enzymes, such as aldo-keto reductases, carbonyl reductases, and aldehyde dehydrogenase 1. Many genes involved in phase-II drug metabolism were induced by Nrf2, including glutathione S -transferases, UDP- glucuronosyltransferases, and UDP-glucuronic acid synthesis enzymes. Efflux transporters, such as multidrug resistance-associated proteins, breast cancer resistant protein, as well as ATP-binding cassette g5 and g8 were induced by Nrf2. In conclusion, Nrf2 markedly alters hepatic mRNA of a large number of drug metabolizing enzymes and xenobiotic transporters, and thus Nrf2 plays a central role in xenobiotic metabolism and detoxification. We used microarrays to detail the global programme of gene expression in response to Nrf2 activation and identified distinct classes of up- and down-regulated genes. process. Gene expression in livers of Nrf2-null, WT, Keap1-KD, and Keap1-HKO mice was determined using Affymetrix Mouse 430.20 arrays by the KUMC Microarray Core Facility. Biological cRNA replicates (n=3) of each genotype were hybridized to an individual array.
Project description:Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct hepatic gene expression profiles between Keap1 knockout and triterpenoid treated mice; Loss of Nrf2 signaling increases susceptibility to acute toxicity, inflammation, and carcinogenesis in mice due to the inability to mount adaptive responses. By contrast, disruption of Keap1 (a cytoplasmic modifier of Nrf2 turnover) protects against these stresses in mice; although dominant negative mutations in Keap1 have been identified recently in some human cancers. Global characterization of Nrf2 activation is important to exploit this pathway for chemoprevention in healthy, yet at-risk individuals and also to elucidate the consequences of hijacking the pathway in Keap1-mutant human cancers. This analysis also enables a global characterization of the pharmacodynamic action of CDDO-Im at a low dose that is relevant to chemoprevention. Experiment Overall Design: Liver-targeted conditional Keap1-null (CKO) mice provide a model of genetic activation of Nrf2 signaling. By coupling global gene expression analysis of CKO mice with analysis of pharmacologic activation using the synthetic oleanane triterpenoid CDDO-Im, we are able to gain insight into pathways affected by Nrf2 activation. CDDO-Im is an extremely potent activator of Nrf2 signaling. CKO mice were used to identify genes modulated by genetic activation of Nrf2 signaling. The CKO response was compared to hepatic global gene expression changes in wild-type mice treated with CDDO-Im at a maximal Nrf2 activating dose. n=3/group, male 9 week old mice were used. Mice were treated with a single dose of vehicle (10% Cremophor-EL, 10% DMSO, and PBS) or 30 umol CDDO-Im/kg body weight by gavage and sacrificed 6 h later.