Project description:A greenhouse experiment was conducted at the Federal University of Alagoas in Maceio, Brazil. One-eye sett of sugarcane was planted in 20 liters plant pots, arranged in a completely randomized design and cultivated for 5 months before water privation.
Project description:Two alfalfa varieties, 'Chilean' (M. sativa ssp. sativa var. Chilean, drought sensitive) and 'Wisfal' (M. sativa ssp. falcata var. Wisfal, drought tolerant), with contrasting water use efficiency were subjected to water withholding for 11 days followed by re-watering. Samples were taken for well-watered plants and plants after five, eight, eleven days of drought stress as well as plants after recovery for one day following drought stress. Roots and shoots were sampled and analyzed separately by expression profiling using Affymetrix Medicago GeneChip.
Project description:Drought is a major limiting factor in foraging grass yield and quality. Medicago ruthenica is a high-quality forage legume with drought resistance, cold tolerance, and strong adaptability. In this study, we integrated transcriptome, small RNA, and degradome sequencing in identifying drought response genes, miRNAs, and key miRNA-target pairs in M. ruthenica under drought and re-watering treatment conditions. A total of 3,905 genes and 50 miRNAs (45 conserved and 5 novel miRNAs) were significantly differentially expressed between the re-watering (RW) vs. drought (DS) comparison and control (CK) groups. The degradome sequencing analysis revealed that 348 miRNAs (37 novel and 311 conserved miRNAs) were identified with 6,912 target transcripts, forming 11,390 miRNA-target pairs in the three libraries. There were 38 differentially expressed targets from 16 miRNAs in DS vs. CK, 31 from 11 miRNAs in DS vs. RW, and 6 from 3 miRNAs in RW vs. CK; 21,18, and 3 miRNA-target gene pairs showed reverse expression patterns in DS vs. CK, DS vs. RW, and RW vs. CK comparison groups, respectively. These findings provide valuable information for further functional characterization of genes and miRNAs in response to abiotic stress, in general, and drought stress in M. ruthenica, and potentially contribute to drought resistance breeding of forage in the future.