Project description:We used transcriptomics to investigate how Mucispirillum schaedleri ASF 457 interferes with the gene expression of Salmonella Typhimurium in the cecum of gnotobiotic mice
Project description:Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals. To gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and tested for traits predicted by the genome using physiological experiments. Although thought to be a mucus degrader, its genome surprisingly predicts that M. schaedleri has limited capacity for degrading host-derived mucosal glycans or other complex polysaccharides. Rather, it may utilize small compounds such as peptides, amino acids, glycerol, and short chain fatty acids. Additionally, it can reduce nitrate and has systems for scavenging oxygen and reactive oxygen species, which accounts for its presence close to the mucosal tissue and during inflammation. Also of note, M. schaedleri harbors a type VI secretion system (T6SS) and several putative effector proteins containing eukaryotic domains, which suggest intimate interactions with the host and a role in inflammation. Examination of the individual phylogenies of all genes in the M. schaedleri genome revealed extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria. Though M. schaedleri utilizes non-horizontally-transferred pathways (e.g. nitrate reduction), horizontally-acquired pathways from gut organisms (e.g. T6SS and glycerol-P utilization) are also likely also important for its survival in the intestine, suggesting that lateral gene transfer may have played a key role in facilitating its establishment in the gut ecosystem.
Project description:Round bodies in spirochete cultures have been a controversial subject since their description seven decades ago. We report the existence of round bodies (spherical cells) in cultures of Mucispirillum schaedleri, a spiral bacterium phylogenetically distant from spirochetes. Furthermore, when grown in biofilms, M. schaedleri demonstrates a unique morphology known as cording, which has been previously described only in mycobacteria. Thus, M. schaedleri has two distinct features, each previously thought to be unique to two different phylogenetically distant groups of bacteria.
Project description:Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species in vivo, which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, M. schaedleri harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The M. schaedleri genome has been shaped by extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem. IMPORTANCE Shifts in gut microbiota composition have been associated with intestinal inflammation, but it remains unclear whether inflammation-associated bacteria are commensal or detrimental to their host. Here, we studied the lifestyle of the gut bacterium Mucispirillum schaedleri, which is associated with inflammation in widely used mouse models. We found that M. schaedleri has specialized systems to handle oxidative stress during inflammation. Additionally, it expresses secretion systems and effector proteins and can modify the mucosal gene expression of its host. This suggests that M. schaedleri undergoes intimate interactions with its host and may play a role in inflammation. The insights presented here aid our understanding of how commensal gut bacteria may be involved in altering susceptibility to disease.
| S-EPMC5285517 | biostudies-literature
Project description:Mucispirillum schaedleri protects mice against non-typhoidal Salmonella colitis
Project description:We sequenced and analyzed the genome of a highly inbred miniature Chinese pig strain, the Banna Minipig Inbred Line (BMI). we conducted whole genome screening using next generation sequencing (NGS) technology and performed SNP calling using Sus Scrofa genome assembly Sscrofa11.1.