Project description:In feather-footed pigeons, mutant alleles of PITX1 and TBX5 drive the partial redeployment of an evolutionarily conserved forelimb genetic program in the hindlimb.
Project description:The tetrapod limb is a stunning example of evolutionary diversity, with dramatic variation not only among distantly related species, but also between the serially homologous forelimbs (FLs) and hindlimbs (HLs) within species. Despite this variation, highly conserved genetic and developmental programs underlie limb development and identity in all tetrapods, raising the question of how limb diversification is generated from a conserved toolkit. In some breeds of domestic pigeon, shifts in the expression of two conserved limb identity transcription factors, PITX1 and TBX5, are associated with the formation of feathered HLs with partial FL identity. To determine how modulation of PITX1 and TBX5 expression affects downstream gene expression, we compared the transcriptomes of embryonic limb buds from pigeons with scaled and feathered HLs. We identified a set of differentially expressed genes enriched for genes encoding transcription factors, extracellular matrix proteins, and components of developmental signaling pathways with important roles in limb development. A subset of the genes that distinguish scaled and feathered HLs are also differentially expressed between FL and scaled HL buds in pigeons, pinpointing a set of gene expression changes downstream of PITX1 and TBX5 in the partial transformation from HL to FL identity. We extended our analyses by comparing pigeon limb bud transcriptomes to chicken, anole lizard, and mammalian datasets to identify deeply conserved PITX1- and TBX5-responsive components of the limb identity program. Our analyses reveal a suite of predominantly low-level gene expression changes that are conserved across amniotes to regulate the identity of morphologically distinct limbs.
Project description:The genetic and developmental mechanisms that control the decision between scale and feather growth â two profoundly different epidermal appendages, and an important developmental shift in the evolution of birds from their dinosaurian ancestors â remain poorly understood. Domestic pigeons display dramatic variation in foot epidermal appendages within a single species, and classical studies suggest that a small number of genes control much of this variation; thus pigeons provide a tractable model to understand skin appendage specification and variation. Here we show that feathered feet in pigeons are the consequence of a partial transformation of limb-type identity mediated by cis-regulatory changes in the hindlimb-specific transcription factor Pitx1 and forelimb-specific transcription factor Tbx5. We also demonstrate that ectopic hindlimb expression of Tbx5 is associated with the development of foot feathers in domestic chickens, suggesting that similar developmental mechanisms underlie phenotypic convergence in avian lineages that diverged over 100 MYA. These results show how qualitative and quantitative changes in expression of regional patterning genes can generate localized changes in organ fate and morphology, and provide a viable molecular mechanism for the evolution of hindlimb scale and feather distribution in dromaeosaurs. Examination of H3K27ac status in embryonic limb buds from two domestic pigeon breeds, racing homer and Indian fantail
Project description:Salamander limb regeneration is an accurate process which gives rise exclusively to the missing structures, irrespective of the amputation level. This suggests that cells in the stump have an awareness of their spatial location, a property termed ‘positional identity’. Little is known about how positional identity is encoded, in salamanders or other biological systems. Through single-cell RNAseq analysis, we identified Tig1/RARRES1 as a potential determinant of proximal identity. Tig1 encodes a conserved cell surface molecule, is regulated by retinoic acid and exhibits a graded expression along the proximo-distal axis of the limb. Its overexpression leads to regeneration defects in the distal elements and elicits proximal displacement of blastema cells, while its neutralisation blocks proximo-distal cell surface interactions. Critically, Tig1 reprogrammes distal cells to a proximal identity, upregulating Prod1 and inhibiting HoxA13 and distal transcriptional networks. Thus, Tig1 is a central cell surface determinant of proximal identity in the salamander limb.
Project description:Deep sequencing of mRNA from the rock pigeon Analysis of ploy(A)+ RNA of different specimens: heart and liver from the rock pigeon (Danish Tumbler, Oriental Frill and Racing)
Project description:A comparative profile of miRNAs in livers during pigeon development was performed by using high-throughput sequencing. We identified known pigeon miRNAs, novel miRNAs, and miRNAs that are conserved in other birds and mammals.Our results expanded the repertoire of pigeon miRNAs and may be of help in better understanding the mechanism of squab’s rapid development from the perspective of liver development.
Project description:Regenerating limbs retain their proximodistal (PD) positional identity following amputation. This positional identity is encoded genetically by PD patterning genes, which instruct blastema cells to regenerate the appropriate PD limb segment. Retinoic acid (RA) is known to specify proximal limb identity, but how RA concentration is established in the blastema is unknown. Here, we show that RA breakdown via CYP26B1 is essential for determining the RA concentration within blastemas. CYP26B1 inhibition molecularly reprograms distal blastemas into a proximal identity, phenocopying the effects of administering excess RA. We identify Shox as an RA responsive gene that is differentially expressed between proximally and distally amputated blastemas. Ablation of Shox results in shortened limbs with proximal skeletal elements that fail to undergo endochondral ossification. These results suggest that PD positional identity is determined by RA degradation and that targets of RA have a critical role in skeletal element formation during limb regeneration.