Project description:Streptomyces sp. M7 has demonstrated ability to remove lindane from culture media and soils. In this study, we used MS-based label-free quantitative proteomic to understand lindane degradation and its metabolic context in Streptomyces sp. M7. We identified the proteins involved in the up-stream degradation pathway. Our results demonstrated that mineralization of lindane is feasible since proteins from an unusual down-stream degradation pathway were also identified. Degradative steps were supported by an active catabolism that supplied energy and reducing equivalents in the form of NADPH. This is the first study in which degradation steps of an organochlorine compound and metabolic context are elucidate in a biotechnological genus as Streptomyces. These results serve as basement to study other degradative actinobacteria and to improve the degradation processes of Streptomyces sp. M7.
Project description:This study is aimed to isolate marine actinomycetes from sediments from Andaman and the Gulf of Thailand. All 101 marine actinomycetes were screened for anti-biofilm activity. Streptomyces sp. GKU223 showed significantly inhibited biofilm formation of S. aureus. The evaluation of supernatants of anti-biofilm activity produced by Streptomyces sp. GKU223 has been performed. Since the interaction between marine actinomycetes and biofilm forming bacteria has never been investigated, proteomic analysis has been used to identify whole cell proteins involved in anti–biofilm activity. Understanding the interaction at molecular level will lead to sustainably use for anti-biofilm producing marine actinomycetes in pharmaceutical and medicinal applications in the future.
Project description:This study aimed to investigate the variations in the protein composition of Streptomyces sp. PU10 when cultivated with either Impranil (polyestere-polyurethane) or glucose as the carbon source. We analyzed both the intracellular and extracellular protein fractions to gain insights into the intricate processes involving PU degradation, intermediate metabolic pathways in PU degradation, and the connection between primary and secondary metabolism within Streptomyces sp. PU10.
Project description:This study is aimed to isolate marine actinomycetes from sediments from Andaman and the Gulf of Thailand. All 101 marine actinomycetes were screened for anti-biofilm activity. Streptomyces sp. GKU 257-1 showed significantly inhibited biofilm formation of E. coli. The evaluation of supernatants of anti-biofilm activity produced by Streptomyces sp. GKU 257-1 has been performed. Since the interaction between marine actinomycetes and biofilm forming bacteria has never been investigated, proteomic analysis has been used to identify whole cell proteins involved in anti–biofilm activity. Understanding the interaction at molecular level will lead to sustainably use for anti-biofilm producing marine actinomycetes in pharmaceutical and medicinal applications in the future.
Project description:Actinobacteria provide a rich spectrum of bioactive natural products and therefore display an invaluable source towards commercially valuable pharmaceuticals and agrochemicals. Here, we studied the use of inorganic talc microparticles (hydrous magnesium silicate, 3MgO·4SiO2·H2O, 10 µm) as a general supplement to enhance natural product formation in this important class of bacteria. Added to cultures of recombinant Streptomyces lividans, talc (10 g L-1) enhanced production of the macrocyclic peptide antibiotic bottromycin A2 and its methylated derivative Met-bottromycin A2 up to 43%. Hereby, the microparticles fundamentally affected metabolism. With talc, S. lividans grew to 40% smaller pellets and, using RNA sequencing, revealed accelerated morphogenesis and aging, indicated by early upregulation of developmental regulator genes such as ssgA, ssgB, wblA, sigN and bldN. Furthermore, the microparticles re-balanced the expression of individual bottromycin cluster genes, resulting in a higher macrocyclization efficiency at the level of BotAH and correspondingly lower levels of non-cyclized shunt by-products, driving the production of mature bottromycin. Testing a variety of Streptomyces species, talc addition resulted in up to 13-fold higher titers for the RiPPs bottromycin and cinnamycin, the alkaloid undecylprodigiosin, the polyketide pamamycin, the tetracycline-type oxytetracycline, and the anthramycin-analogues usabamycins. Moreover, talc addition boosted production in other actinobacteria, outside of the genus of Streptomyces: vancomycin (Amycolatopsis japonicum DSM 44213), teicoplanin (Actinoplanes teichomyceticus ATCC 31121), and the angucyclinone-type antibiotic simocyclinone (Kitasatospora sp. DSM 102431). For teicoplanin, the microparticles were even crucial to activate production. Taken together, the use of talc was beneficial in 75% of all tested cases and optimized natural and heterologous hosts forming the substance of interest with clusters under native and synthetic control. Given its simplicity and broad benefits, microparticle-supplementation appears as an enabling technology in natural product research of these most important microbes.
Project description:Streptomyces sp. MB42 produces antimicrobial compound under the pressence of specific compounds. This experiment is to see which gene cluster upregulated during the treatment of target compound.
Project description:Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information has been characterized in only a few species. Our goal was to explore the response of freshwater Actinobacteria, which are ubiquitous in illuminated aquatic environments, to light. We found that Actinobacteria without functional photosystems grow faster in the light, likely because sugar transport and metabolism are upregulated in the light, while protein synthesis is upregulated in the dark. Based on the action spectrum of the growth effect, and comparisons of the genomes of three Actinobacteria with this growth rate phenotype, we propose that the photosensor in these strains is a putative CryB-type cryptochrome. The ability to sense light and upregulate carbohydrate transport during the day could allow these cells to coordinate their time of maximum organic carbon uptake with the time of maximum organic carbon release by primary producers.