Project description:The exon junction complex (EJC) is composed of three core proteins Rbm8a, Magoh and Eif4a3 and is thought to play a role in several post-transcriptional processes. In this study we focus on understanding the role of EJC in zebrafish development. We identified transcriptome-wide binding sites of EJC in zebrafish via RNA:protein immunoprecipitation followed by deep sequencing (RIP-Seq). We find that, as in human cells, zebrafish EJC is deposited about 24 nts upstream of exon-exon junctions. We also identify transcripts regulated by Rbm8a and Magoh in zebrafish embryos using whole embryo RNA-seq from rbm8a mutant, magoh mutant and wild-type sibling embryos. This study shows that nonsense mediated mRNA decay is dysregulated in zebrafish EJC mutants.
Project description:Zebrafish (Danio rerio) model system have used widespread vertebrate investigations for genetic and cell biological analyses, and is suitable for small molecular screens such as chemical, toxicity and drug in order to use for human diseases and drug discovery . Recently, These powerful zebrafish model increasingly apply to human metabolic disease such as obesity and diabetes and toxicology. Despite a lot of advantages, proteomics research at zebrafish has received little interest in comparison with genetic and biological research using histology and in situ hybridization. Protein lysine acetylation is one of the most known post-translational modifications with dynamic and reversibly controlled by lysine acetyltransferase such as histone acetyltransferases and lysine deacetylase such as histone deacetylases and sirtuins family.Also, during the past year, global lysine acetylome studies using MS-based proteomics approach was in diverse species such as human, mouse, E. coli, Yeast and plants. Based on global acetylome data, our understanding of the roles of lysine acetylation in various cellular processes has increased. . The aim of this study was to identify Lysine acetylation in zebrafish embryos and determine the homology from Human at modified site level. Here we showed the global lysine acetylation study in Zebrafish embryos using MS-based zebrafish embryos.
Project description:In triplicate for each condition, 12 WT and acbd6 F0 crispant Danio rerio (zebrafish) embryos were incubated with 20 μM YnMyr for 24 h, either between 48-72 hpf or 96-120 hpf. After labelling, zebrafish were washed twice with fresh egg water, deyolked, flash frozen in liquid nitrogen and stored at -80°C until further analysis.
Project description:This project aimed at identifying developmental stage specific transcript profiles for catecholaminergic neurons in embryos and early larvae of zebrafish (Danio rerio). Catecholaminergic neurons were labeled using transgenic zebrafish strains to drive expression of GFP. At stages 24, 36, 72 and 96 hrs post fertilization, embryos were dissociated and GFP expressing cells sorted by FACS. Isolated RNAs were processed using either polyA selection and libray generation or NanoCAGE. This is the first effort to determine stage specific mRNA profiles of catecholaminergic neurons in zebrafish.