Project description:In this study, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was applied to define the occurrence, diversity and origin of glycosyl-hydrolases along the digestive tract of P. canaliculata. Cellulases, hemicellulases, amylases, maltases, fucosidases and galactosidases were identified across the digestive tract. The digestive gland and the contents of the crop and style sac yield a higher diversity of glycosidase-derived peptides.
Project description:The indigenous human gut microbiota is a major contributor to the human superorganism with established roles in modulating nutritional status, immunity, and systemic health including diabetes and obesity. The complexity of the gut microbiota consisting of over 1012 residents and approximately 1000 species has thus far eluded systematic analyses of the precise effects of individual microbial residents on human health. In contrast, health benefits have been shown upon ingestion of certain so-called probiotic Lactobacillus strains in food products and nutritional supplements, thereby providing a unique opportunity to study the global responses of a gut-adapted microorganism in the human gut and to identify the molecular mechanisms underlying microbial modulation of intestinal physiology, which might involve alterations in the intestinal physico-chemical environment, modifications in the gut microbiota, and/or direct interaction with mucosal epithelia and immune cells. Here we show by transcriptome analysis using DNA microarrays that the established probiotic bacterium, L. plantarum 299v, adapts its metabolic capacity in the human digestive tract for carbohydrate acquisition and expression of exo-polysaccharide and proteinaceous cell surface compounds. This report constitutes the first application of global gene expression profiling of a gut-adapted commensal microorganism in the human gut. Comparisons of the transcript profiles to those obtained for L. plantarum WCFS1 in germ-free mice revealed conserved L. plantarum responses indicative of a core transcriptome expressed in the mammalian gut and provide new molecular targets for determining microbial-host interactions affecting human health. Hybridization of the samples against a common reference of gDNA isolated from L. plantarum 299v
Project description:The purpose of this study is to detect the concentration of various gases,including hydrogen, methane, hydrogen sulfide, nitric oxide in different parts of the digestive tract by a safe and direct method, and to establish a human digestive tract gas profiles. Analyze the differences in gas components in different segments of the digestive tract in patients with different diseases, and analyze the correlation between specific gases and digestive tract diseases and non-specific symptoms.
Project description:Glomus tumors (GT) are perivascular tumors mostly occurring in the distal extremities. Rare cases occur in the digestive tract and may be misdiagnosed with neuroendocrine or gastrointestinal stromal tumors. We aimed to specify the features of GT of the upper digestive tract. We investigated two cases using whole exome sequencing (WES) and RNA-sequencing, and present clinical, histological, phenotypic and molecular features of 16 cases. WES did not reveal any commonly involved cellular pathway. By contrast, RNA-sequencing disclosed a t(1:5)(p13;q32) translocation between MIR143HG and NOTCH2 in both cases. The deducted fusion protein sequence corresponded to the NOTCH2 intracellular domain known as NICD2, which acts as transcription factor. These data were confirmed by high expression of the transcripts of genes targeted by NOTCH cellular pathway (HES and HEY gene families). In our retrospective multicentric series of 16 GT of upper digestive tract MIR143HG-NOTCH2 translocation was detected in 14 (88%) cases. By contrast, it was present in only 2/6 (33%) GT of the distal extremities. Most digestive GT raised from the stomach (n=13), and the others from duodenal (2) or oesophagous (1). All digestive GT were positive for α-smooth muscle actin and transgelin, and negative for cytokeratin AE1/AE3, chromogranine, DOG1, KIT and S100. Most cases were positive for H-caldesmon (n=14) and/or for synaptophysin (n=10). Desmin, CD34 or CD56 were positive in only one case each. Nuclear expression of NOTCH2 was detected in the 14 cases containing the fusion transcripts. The present study shows that MIR143HG-NOTCH2 translocation is present in most digestive GT. This fusion transcript is associated with activation of the NOTCH2 pathway and may drive tumor development. Detection of nuclear NOTCH2 expression may be helpful for diagnosis.
Project description:The indigenous human gut microbiota is a major contributor to the human superorganism with established roles in modulating nutritional status, immunity, and systemic health including diabetes and obesity. The complexity of the gut microbiota consisting of over 1012 residents and approximately 1000 species has thus far eluded systematic analyses of the precise effects of individual microbial residents on human health. In contrast, health benefits have been shown upon ingestion of certain so-called probiotic Lactobacillus strains in food products and nutritional supplements, thereby providing a unique opportunity to study the global responses of a gut-adapted microorganism in the human gut and to identify the molecular mechanisms underlying microbial modulation of intestinal physiology, which might involve alterations in the intestinal physico-chemical environment, modifications in the gut microbiota, and/or direct interaction with mucosal epithelia and immune cells. Here we show by transcriptome analysis using DNA microarrays that the established probiotic bacterium, L. plantarum 299v, adapts its metabolic capacity in the human digestive tract for carbohydrate acquisition and expression of exo-polysaccharide and proteinaceous cell surface compounds. This report constitutes the first application of global gene expression profiling of a gut-adapted commensal microorganism in the human gut. Comparisons of the transcript profiles to those obtained for L. plantarum WCFS1 in germ-free mice revealed conserved L. plantarum responses indicative of a core transcriptome expressed in the mammalian gut and provide new molecular targets for determining microbial-host interactions affecting human health.