Project description:The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains both C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the Flaveria genus contains 21 of the 23 known Flaveria species and has been constructed using a combination of morphologicial data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnl-F). However, recent studies have suggested that phylogenetic trees inferred using a small number of molecular sequences may often be incorrect. Moreover, studies in other genera have often shown substantial differences between trees inferred using morphological data and those using molecular sequence. To provide new insight into the phylogeny of the genus Flaveria we utilize RNA-Seq data to construct a multi-gene concatenated phylogenetic tree of 17 Flaveria species. Furthermore, we use this new data to identify 14 C4 specific non-synonymous mutation sites, 12 of which (86%) can be independently verified by public sequence data. We propose that the data collection method provided in this study can be used as a generic method for facilitating phylogenetic tree reconstruction in the absence of reference genomes for the target species. 18 Flaveria sample including 11 species are sequenced, other three samples were also sequenced as out-group. In all, 21 samples.
Project description:The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains both C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the Flaveria genus contains 21 of the 23 known Flaveria species and has been constructed using a combination of morphologicial data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnl-F). However, recent studies have suggested that phylogenetic trees inferred using a small number of molecular sequences may often be incorrect. Moreover, studies in other genera have often shown substantial differences between trees inferred using morphological data and those using molecular sequence. To provide new insight into the phylogeny of the genus Flaveria we utilize RNA-Seq data to construct a multi-gene concatenated phylogenetic tree of 17 Flaveria species. Furthermore, we use this new data to identify 14 C4 specific non-synonymous mutation sites, 12 of which (86%) can be independently verified by public sequence data. We propose that the data collection method provided in this study can be used as a generic method for facilitating phylogenetic tree reconstruction in the absence of reference genomes for the target species.
Project description:Collimonas is a genus of soil bacteria which comprises three recognized species: C. fungivorans, C. pratensis and C. arenae. The bacteria belonging to this genus share the ability to lyse chitin (chitinolysis) and feed on living fungal hyphae (mycophagy), but they differ in colony morphology, physiological properties and antifungal activity. In order to gain a better insight into the genetic background underlying this phenotypic variability of collimonads, we investigated the variability in the genomic content of five strains representing the three formally recognized Collimonas species. The genomic content of four test strains was hybridized on an array representing the reference strain C. fungivorans Ter331.
2011-12-30 | E-MTAB-349 | biostudies-arrayexpress
Project description:chloroplast genomes of 12 Puya samples
Project description:Nosema is a diverse fungal genus of microsporidian unicellular, obligate symbionts of insects and other arthropods. We performed a comparative genomic analysis of N. muscidifuracis, a Nosema species infecting parasitoid wasp genus Muscidifurax, with six other genome-sequenced Nosema species. A sequence motif containing at least three consecutive Cs was significantly enriched immediately upstream of the start codon in all seven Nosema genomes. Interestingly, this motif is present in ~90% of highly expressed genes, compared to ~20% in lowly expressed genes N. muscidifuracis, which may function as a cis-regulatory element for gene expression control and regulation. Our study provides new insights into the gene regulation evolution in Nosema.
2023-11-26 | GSE248484 | GEO
Project description:Complete chloroplast genome sequences of three species of the genus Callerya and phylogenetic analysis with related species
Project description:In the present study, we discover the presence of m2A in chloroplast rRNA and tRNA, as well as cytosolic tRNA, in multiple plant species. We identify six m2A-modified chloroplast tRNAs and two m2A-modified cytosolic tRNAs across different plants. Furthermore, we characterize three Arabidopsis m2A methyltransferases—RLMNL1, RLMNL2, and RLMNL3—which methylate chloroplast rRNA, chloroplast tRNA, and cytosolic tRNA, respectively. Our findings demonstrate that m2A37 promotes a relaxed conformation of tRNA, enhancing translation efficiency in chloroplast and cytosol by facilitating decoding of tandem m2A-tRNA-dependent codons. This study provides insights into the molecular function and biological significance of m2A, uncovering a layer of translation regulation in plants.