Project description:Human Freshly isolated monocyte (CD14++CD16-) and (CD14+ CD16++) were purified from healthy volunteers' blood, and sorted by FAC. We used Taqman miRNA TLDA arrays to performed miRNA profiling
Project description:The new official nomenclature subdivides human monocytes into three subsets, classical (CD14++CD16-), intermediate (CD14++CD16+) and nonclassical (CD14+CD16+). Here, we comprehensively define relationships and unique characteristics of the three human monocyte subsets using microarray and flow cytometry analysis. Our analysis revealed that the intermediate and nonclassical monocyte subsets were most closely related. For the intermediate subset, majority of genes and surface markers were expressed at an intermediary level between the classical and nonclassical subset. There features therefore indicate a close and direct lineage relationship between the intermediate and nonclassical subset. From gene expression profiles, we define unique characteristics for each monocyte subset. Classical monocytes were functionally versatile, due to the expression of a wide range of sensing receptors and several members of the AP-1 transcription factor family. The intermediate subset was distinguished by high expression of MHC class II associated genes. The nonclassical subset were most highly differentiated and defined by genes involved in cytoskeleton rearrangement that explains their highly motile patrolling behavior in vivo. Additionally, we identify unique surface markers, CLEC4D, IL-13RA1 for classical, GFRA2, CLEC10A for intermediate and GPR44 for nonclassical. Our study hence defines the fundamental features of monocyte subsets necessary for future research on monocyte heterogeneity. Three human monocyte subsets, the CD14++CD16- classical, the CD14++CD16+ intermediate and CD14+CD16+ nonclassical subsets were purified using fluorescence activated cell sorting from peripheral blood mononuclear cells. RNA was processed from the three monocyte subsets from 4 individual donors in duplicates, giving a total of 24 samples.
Project description:The new official nomenclature subdivides human monocytes into three subsets, classical (CD14++CD16-), intermediate (CD14++CD16+) and nonclassical (CD14+CD16+). Here, we comprehensively define relationships and unique characteristics of the three human monocyte subsets using microarray and flow cytometry analysis. Our analysis revealed that the intermediate and nonclassical monocyte subsets were most closely related. For the intermediate subset, majority of genes and surface markers were expressed at an intermediary level between the classical and nonclassical subset. There features therefore indicate a close and direct lineage relationship between the intermediate and nonclassical subset. From gene expression profiles, we define unique characteristics for each monocyte subset. Classical monocytes were functionally versatile, due to the expression of a wide range of sensing receptors and several members of the AP-1 transcription factor family. The intermediate subset was distinguished by high expression of MHC class II associated genes. The nonclassical subset were most highly differentiated and defined by genes involved in cytoskeleton rearrangement that explains their highly motile patrolling behavior in vivo. Additionally, we identify unique surface markers, CLEC4D, IL-13RA1 for classical, GFRA2, CLEC10A for intermediate and GPR44 for nonclassical. Our study hence defines the fundamental features of monocyte subsets necessary for future research on monocyte heterogeneity.
Project description:Monocytes are a heterogeneous cell population with subset-specific functions and phenotypes. The differential expression of CD14 and CD16 distinguishes classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16++ monocytes. However, CD14++CD16+ monocytes remain the most poorly characterized subset so far. Therefore we analyzed the transcriptomes of the three monocyte subsets using SuperSAGE in combination with high-throughput sequencing. Analysis of 5,487,603 tags revealed unique identifiers of CD14++CD16+ monocytes, delineating these cells from the two other monocyte subsets. CD14++CD16+ monocytes were linked to antigen processing and presentation (e.g. CD74, HLA-DR, IFI30, CTSB), to inflammation and monocyte activation (e.g. TGFB1, AIF1, PTPN6), and to angiogenesis (e.g. TIE2, CD105). Therefore we provide genetic evidence for a distinct role of CD14++CD16+ monocytes in human immunity. Human monocyte subsets (CD14++CD16-, CD14++CD16+, CD14+CD16++) were isolated from 12 healthy volunteers based on MACS technology. Total RNA from monocyte subsets was isolated and same aliquots from each donor and monocyte subset were matched for SuperSAGE. Three SuperSAGE libraries (CD14++CD16-, CD14++CD16+ and CD14+CD16++) were generated.
Project description:Monocytes are a heterogeneous cell population with subset-specific functions and phenotypes. The differential expression of CD14 and CD16 distinguishes classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16++ monocytes. However, CD14++CD16+ monocytes remain the most poorly characterized subset so far. Therefore we analyzed the transcriptomes of the three monocyte subsets using SuperSAGE in combination with high-throughput sequencing. Analysis of 5,487,603 tags revealed unique identifiers of CD14++CD16+ monocytes, delineating these cells from the two other monocyte subsets. CD14++CD16+ monocytes were linked to antigen processing and presentation (e.g. CD74, HLA-DR, IFI30, CTSB), to inflammation and monocyte activation (e.g. TGFB1, AIF1, PTPN6), and to angiogenesis (e.g. TIE2, CD105). Therefore we provide genetic evidence for a distinct role of CD14++CD16+ monocytes in human immunity.
Project description:Identification of genes differentially expressed between human CD14+CD16- and CD16+ monocyte-derived macrophages generated in the presence of either GM-CSF (termed GM14 and GM16, respectively) or M-CSF (termed M14 and M16, respectively) Human peripheral CD14+CD16- and CD16+ blood monocytes from three independent healthy donors (D1, D2 and D3) were isolated by positive selection from peripheral blood mononuclear cells (PBMC) using magnetic separation systems (MACS, Miltenyi Biotec). Briefly, PBMC were first incubated with MACS anti-CD56 antibody conjugated to paramagnetic microbeads in order to eliminate the NK (CD16+) cell fraction. NK-depleted PBMC were further incubated with MACS anti-CD16 antibody to isolate CD16+ monocytes. CD56-CD16- PBMC were finally incubated with MACS anti-CD14 antibody to obtain the CD14+CD16- monocyte fraction. Monocytes were cultured for 7 days in medium containing either GM-CSF or M-CSF. Total RNA from each condition was extracted using the RNeasy kit (Qiagen) and hybridized to an Agilent Human Whole Genome (4x44) Oligo Microarray. All experimental procedures were performed following manufacturer instructions.
Project description:Identification of genes differentially expressed between human CD14+CD16- and CD16+ monocyte-derived macrophages generated in the presence of either GM-CSF (termed GM14 and GM16, respectively) or M-CSF (termed M14 and M16, respectively)
Project description:Identification of micro-RNAs involved in regulating differential apoptosis and migration potential of human monocyte subsets Comparision between freshly isolated CD14++CD16- monocytes and CD14+CD16+ monocytes from healthy human blood
Project description:Kawasaki disease (KD) is characterized by a disorder of immune response, and its etiology remains unknown. Monocyte is an important member of body's innate immune system, however its role in KD is still elusive due to its ambiguous heterogeneity and complex functions. Here, scRNA-seq was performed to reveal monocytes heterogeneity in healthy and KD infants. Circulating monocytes were separated from peripheral blood and scRNA-seq was used to transcriptionally profile the monocytes in both healthy and KD infants. Four monocyte subsets are identified in infants, in which three clusters are mainly CD14+CD16- monocytes and one cluster is mainly CD14-CD16+ monocytes. The four monocyte subsets possess different biological functions and represent a relatively linear differentiation. CD14+ monocyte subsets in KD are distinct from that of healthy infants, including one subset expressing FOLR3, S100A12 and IL1R2 and the other expressing MT-TN specifically. Moreover, the CD14+ monocyte subsets in KD are poorly differentiated, and their functions mainly involve neutrophil activation. In conclusion, a relatively comprehensive map of circulating monocyte subsets was plotted for the first time in healthy infants. CD14+ monocyte subsets that are distinct from healthy infants were revealed in KD, which may serve as a target for KD treatment in the future.
Project description:We report mRNA expression profiles of blood monocyte subsets in COVID patients with comparison to non-COVD samples. COVID patients were grouped into mild without hospitalization and ICU without ventilation. Monocytes were FACS sorted based on CD14 and CD16 expression, generating classical CD14+CD16- monocytes and CD16+CD14+/++ nonclassical monocytes. The mRNA expression comparison demonstrates a strong response to viral infection and suggests a defect in nonclassical monocytes maturation. It also provides several biomarkers for prognosis purposes, including CD55 and CD81.