Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.
Project description:Pseudostellaria heterophylla is a traditional Chinese herbal medicine, which has been cultivated for hundreds of years. Viral diseases of P. heterophylla occur widely and limit the yield and quality of this medicinal plant. In this study, five leaf samples of P. heterophylla with typical viral symptoms were collected from four main producing regions that are distributed in Fujian, Guizhou, and Anhui Provinces in China and analyzed by next-generation sequencing. Comprehensive bioinformatics analyses revealed that nine viruses in five genera Carlavirus, Potyvirus, Fabavirus, Cucumovirus, and Amalgavirus infected P. heterophylla. Among these viruses, three novel and two known carlaviruses, tentatively designated Pseudostellaria heterophylla carlavirus 1, 2, and 3 (PhCV1, PhCV2, and PhCV3), Jasmine virus C isolate Ph (Ph-JVC) and Stevia carlavirus 1 isolate Ph (Ph-StCV1), respectively, were first identified in P. heterophylla. PhCV1-3 share a similar genomic organization and clear sequence homology with members in the genus Carlavirus and could potentially be classified as new species of this genus. One novel amalgavirus, tentatively designated P. heterophylla amalgavirus 1 (PhAV1), was first identified in P. heterophylla. It had a typical genomic organization of the genus Amalgavirus. In PhAV1, the + 1 programmed ribosomal frameshifting, which is prevalent in most amalgaviruses, was identified and used in the expression of RNA-dependent RNA polymerase (RdRp). Combined with a phylogenetic analysis, PhAV1 could potentially be classified as new species of the genus Amalgavirus. In addition, multiple Broad bean wilt virus 2 (BBWV2) variants, Turnip mosaic virus (TuMV), and Cucumber mosaic virus (CMV), which have been reported in P. heterophylla, were also detected in this study. The distribution of PhCV1-3, Ph-JVC, Ph-StCV1, TuMV, BBWV2, and CMV in four production regions in Fujian, Guizhou, and Anhui Provinces was determined. This study increased our understanding of P. heterophylla virome and provided valuable information for the development of a molecular diagnostic technique and control of viral diseases in P. heterophylla.
Project description:Porcine 60K BeadChip genotyping arrays (Illumina) are increasingly being applied in pig genomics to validate SNPs identified by re-sequencing or assembly-versus-assembly method. Here we report that more than 98% SNPs identified from the porcine 60K BeadChip genotyping array (Illumina) were consistent with the SNPs identified from the assembly-based method. This result demonstrates that whole-genome de novo assembly is a reliable approach to deriving accurate maps of SNPs.